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ABSTRACT

Aiming at the problem of adopting the same level of privacy protection for sensitive data in the process 
of data collection and ignoring the difference in privacy protection requirements, the authors propose 
an adaptive personalized randomized response method based on local differential privacy (LDP-
APRR). LDP-APRR determines the sensitive level through the user scoring strategy, introduces the 
concept of sensitive weights for adaptive allocation of privacy budget, and realizes the personalized 
privacy protection of sensitive attributes and attribute values. To verify the distorted data availability, 
LDP-APRR is applied to frequent items mining scenarios and compared with mining associations 
with secrecy konstraints (MASK), and grouping-based randomization for privacy-preserving frequent 
pattern mining (GR-PPFM). Results show that the LDP-APRR achieves personalized protection of 
sensitive attributes and attribute values with user participation, and the maxPrivacy and avgPrivacy 
are improved by 1.2% and 4.3%, respectively, while the availability of distorted data is guaranteed.
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1. INTRoDUCTIoN

In recent years, big data technologies have emerged in the scenario of booming network and information 
technology. People can discover the laws and knowledge hidden in the data from the huge amount of 
data through data mining algorithms, which is important for industrial development, social services, 
and many other fields (Chen et al., 2023). If the data is directly provided to a third party, it will lead 
to the leakage of personal privacy information, which will bring a great threat to personal safety and 
property security. In addition, if the data miner cannot provide sufficient privacy protection, it will 
lead to some users refusing to provide data due to a lack of trust, and the data miner will not be able 
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to mine more accurate information due to a lack of data. Therefore, it is necessary to design a secure 
privacy protection scheme.

There are more existing privacy protection schemes, such as data anonymization, data 
encryption, data perturbation, etc. (Cormode et al., 2021), Differential Privacy is a privacy 
protection technique based on data perturbation, which has become a hot research topic today 
due to its rigorous mathematical proofs and possession of quantitative privacy protection 
capabilities (Zhang et el., 2023; Duan et al., 2022; Ren et al., 2022; Qian et al., 2022). In the 
big data environment, to prevent privacy attacks by untrustworthy third parties and attackers 
with arbitrary background knowledge, sensitive information needs to be more comprehensively 
protected, and the Local Differential Privacy (LDP) (Duchi et al., 2013) technique has emerged. 
Locality refers to the random perturbation of user data before it leaves a smart device, such as a 
cell phone, and subsequently sent to a third-party data collector, i.e., the data collector only gets 
a part of the true data, and the data still retains a certain utility. Since it was formally proposed 
in 2013, LDP technology has been greatly developed and improved, and widely deployed in 
practical applications, such as Microsoft, Google, Apple, other companies have embedded LDP 
in their applications (Arcolezi et al., 2023).

With the frequent occurrence of privacy leakage incidents, users’ awareness of privacy protection 
is increasing, and the demand for personalized privacy protection is also growing, for which scholars 
have proposed many personalized privacy protection methods (Niu et el., 2021; Ma et al., 2022; Li 
et al., 2022; Qian et al., 2022). Among the existing solutions, GR-PPFM (Guo et al., 2021) is more 
relevant as it can guarantee the availability of perturbed data while providing personalized privacy 
protection for users. However, it ignores the fact that there are also different privacy protection 
needs between the user’s data attributes and attribute values. For example, home address requires a 
higher level of privacy protection compared to gender, and infectious disease (HIV) requires a higher 
level of privacy protection compared to common class of diseases (flu, fever), so GR-PPFM has 
some limitations. In order to solve the problem of adopting the same level of privacy protection for 
sensitive data in the process of data collection, ignoring the fact that different users have personalized 
privacy protection needs for data security and usability, as well as personalized differences in the 
attributes and attribute values of the data itself, this paper designs a personalized random response 
algorithm based on local differential privacy, which determines the sensitive level of user data by a 
scoring strategy, introduces the concept of sensitive weight for adaptive allocation of privacy budget, 
realizes the personalized privacy protection of sensitive attributes and attribute values, and ensures 
the availability of data while meeting the user’s personalized needs. The main contributions of this 
paper are as follows:

1.  In order to solve the problem that the existing personalized privacy protection schemes only 
divide the privacy level based on experience and lacks the user’s personalized needs, this 
paper designs a user scoring strategy to reasonably set the privacy level of the sensitive data 
based on the user scoring; in order to satisfy the different privacy needs of different users for 
different sensitive attributes and attribute values, this paper introduces the concept of sensitive 
weighting and puts forward the method of personalized privacy budget allocation, which 
allocates a reasonable privacy budget for different attributes and attribute values to satisfy the 
users’ personalized needs.

2.  In order to check the availability of distorted data, the proposed algorithm is applied to the 
frequent items mining scenario, and aiming at the problem of low accuracy of direct mining of 
distorted data in this scenario, the support reconstruction method is proposed, which theoretically 
deduces the estimation process of the true support by establishing the mathematical relationship 
between distorted data and true data in order to improve the accuracy of mining.

3.  In order to evaluate the privacy of the proposed algorithm, it is strictly proved that the algorithm 
satisfies LDP theoretically. To verify data availability, the LDP-APRR method is tested on real 
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datasets and compared with the existing methods GR-PPFM (Guo et al., 2021) and MASK 
(Rizvi & Haritsa, 2002). The results show that under the conditions of the same experimental 
scenarios and parameters, and the same overall privacy protection level, the local differential 
privacy algorithm proposed in this paper improves the maxPrivacy and avgPrivacy protection 
level by 1.2% and 4.3%, respectively.

2. ReLATeD woRKS

N.I.E et al. (2018), in response to the fact that the LDP in the process of data collection and 
processing mainly focus on the optimization of a single privacy level, ignoring the user’s multilevel 
privacy needs, designed a user-selectable privacy protection level histogram estimation method, 
which completed the estimation of different levels separately, and then optimally combined the 
estimation results of different levels. Niu et al. (2021) proposed a generic framework called 
SmartGuard to provide users with personalized privacy protection, which quantified user privacy 
in different scenarios, simulated the impact of different Privacy Preserving Mechanisms on several 
key factors, and then recommended the optimal privacy policy based on the user’s preference and the 
current state of the user’s mobile device. Li et al. (2022) explored to add High-Dimensional Gaussian 
noise to the model COEfficients (HDG-COE) and generated personalized locally differentially 
private models for query response. In HDG-COE, the model owner set the indistinguishable 
region containing the model as a safe region, the larger the region, the more privacy was provided 
by the mechanism, but the lower the model utility. Wang et al. (2022) proposed a multilevel 
LDP algorithm recommendation framework, which can set the user’s weight for each resource 
according to the user’s preference or establish guidance by the service provider to recommend 
different LDP algorithms for different users but suitable for the current environment of their own 
resources through multilevel management to achieve multiuser differential privacy protection. 
Xue et al. (2022) based on LDP by a non-uniform sampling procedure allows each user to specify 
his/her own privacy budget and security region based on his/her individual privacy needs, and 
perturbed sensitive data with privacy parameters to protect privacy. In addition to different privacy 
protection preferences for different users, Murakami and Kawamoto (2019) pointed out that not 
all sensitive data had the same level of sensitivity and propose the concept of Utility-optimized 
Local Differential Privacy (ULDP), which was based on utility-optimized random response and 
RAPPOR to provide LDP privacy protection for sensitive data only. Considering the setting that 
the difference between sensitive and non-sensitive data may vary from user to user, a personalized 
ULDP mechanism with semantic labels was proposed to estimate the distribution of personal 
data in a high utility way while keeping sensitive information of each user confidential. With this 
background, Gu et al. (2020) proposed Input-Discriminative Local Differential Privacy (ID-LDP) 
to discriminate different input data. Unlike differentiating different data using distance, ID-LDP 
quantified the degree of indistinguishability of different privacy budgets corresponding to inputs 
by assigning privacy protection coefficients to different data and introducing a systematically 
defined functional representation.

In addition to LDP-based personalized privacy protection methods, other personalized privacy 
methods have also been studied by scholars (Guo et el., 2021; Song et al., 2020; Liu et al., 2022). 
Guo et al. (2021) grouped the data according to the privacy protection requirements of different 
individuals, and set different privacy protection levels and corresponding randomization parameters 
for each group of data, i.e., the grouped multi-parameter randomization was used to protect the 
privacy data, but it adopted the same level of privacy protection for the user’s attributes as well 
as the attribute values, ignoring the differentiation protection between the attributes as well as 
the attribute values. Song et al. (2020) introduced the weights of sensitive values on the basis of 
Conventional Randomized Response (CRR) model and introduced them into the decision-making 
of randomized response, proposing a Personalized Randomized Response (PRR) oriented to multi-
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sensitive values, which ensured that different groups of sensitive values can achieve the desired 
level of privacy protection, and realized personalized privacy protection. Liu et al. (2022) used a 
locally sensitive hashing method to calculate the similarity of users based on the characteristics 
of activity recognition data, users were trained only with similar users instead of all users, and 
feature incremental selection model with integrated learning was used to train the model in a 
personalized way.

3. PReLIMINARIeS

3.1 Local Differential Privacy
In LDP, the user performs distorted data locally and subsequently sends the distorted data to the 
server, which uses the distorted data to mine the required information. Since the server does not get 
all the data of the user and hence cannot get the private information of the user, the formalization of 
LDP is defined as follows:

Definition 1. ( e -Local Differential Privacy) (Duchi et al., 2013) Given a privacy budget e ³ 0 , 
for a perturbation mechanism R T D: ® , if and only if for any inputs x x T, ′ ∈ , the probability of 
obtaining any output y DÎ  satisfies Pr PrR x y e R x y( ) ={ } ≤ ′( ) ={ }e ,we say that perturbation 
mechanism R  that satisfies e -local differential privacy ( e -LDP).

e-LDPguarantees that an arbitrary attacker cannot infer the exact original inputs from the 
outputs, and that all the data in T  output the same result with almost the same probability when the 
privacy budget e  tends to zero, in other words, the smaller the privacy budget e  is, the stronger the 
protection of user privacy is.

In addition, Differential Privacy has two important combinatorial theorems:
Theorem 1. (Sequential Composition)(McSherry & Talwar, 2007) For the same dataset T , if 

the perturbation mechanisms R i n
i
1≤ <( )  satisfies e

i
-LDP, respectively, it is said that the set of 

algorithms { , , , }R R R
n1 2

  of sequence combinations satisfy e
ii

n

=∑ 1
-LDP.

Theorem 2. (Parallel Composition) (McSherry, 2009) For the same dataset T  divided into n  
disjoint datasets T i n

i
1≤ <( ) , if the perturbation mechanism R

i
 acting on each dataset 

T i n
i
1≤ <( )  satisfies the e

i
-LDP respectively, it is said that the set of algorithms R R R

n1 2
, , ,{ }  

of parallel combinations satisfy max
i n i1≤ <
{ }e -LDP.

3.2 Perturbation Mechanisms
From Definition 1, it can be seen that the implementation of e -LDP requires the intervention of the 
perturbation mechanism R . This section describes three common perturbation mechanisms: the 
Randomized Response (RR) mechanism (Warner, 1965), the Generalized Randomized Response 
(GRR) mechanism (Kairouz et al., 2014), and the Personalized Randomized Response (PRR) 
mechanism (Song et al., 2020).

3.2.1 RR
Warner (1965) first proposed the use of the RR mechanism for privacy-sensitive data collection in 
1965, a technique that draws on classic methods in statistical research to simulate an investigator’s 
ability to collect valuable statistical data while trying not to invade the privacy of respondents. Each 
participant has a probability of giving a true answer of p , or a probability of giving the opposite 
answer of 1- p , whose mathematical expression is shown below:
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where x  denotes real data and y  denotes distorted data.
This mechanism can only perturb data containing two candidate values (yes or no), so it is no 

longer applicable when perturbing data with multiple candidate values.

3.2.2 k-RR
Kairouz et al. (2014) proposed the Generalized Randomized Response (GRR) mechanism, also known 
as the k -RR mechanism, to solve the problem that the RR mechanism is only applicable to the data 
with two candidate values, which can be directly randomly distorted for the case containing a variety 
of candidate values. The probability of k -RR for distorted data is:
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When k = 2 , k -RR is equivalent to RR. In order for k -RR to satisfy the e -LDP. Wang et al. 

(2018) stated that p  should be satisfied: p e

e k
=

+ −
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. Therefore, the k -RR mechanism satisfying 

the e -LDP can be expressed as follows:
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This mechanism retains the true value with probability e e ke e/ + −( )1  and perturbs it with 

probability 1 1/ e ke + −( )  to some other values.

3.2.3 PRR
Song et al. (2020) found that the k -RR mechanism adopted the same level of privacy protection 
when privacy protecting data, which would lead to some data being “over-protected” and some data 
being “under-protected”, therefore, a Personalized Randomized Response (PRR) mechanism was 
proposed. The PRR mechanism is proposed, which introduces sensitive weights on the basis of the 
k -RR mechanism to achieve personalized privacy protection for k ³ 2  candidate values. The 
probability of distorted data by PRR is:

P y x
p w y x
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where p w
i

( )  is 
exp

exp

m

m

w

w
k

i

i




















+ −1

, the parameter m  can be set according to the privacy protection 

needs, and w i k
i
∈ 


( )1,  denotes the subjective sensitivity of the user or the data provider to the true 

candidate value x
i
.

4. PRoPoSeD MeTHoD

4.1 The LDP-APRR Method
Privacy budget, as an important parameter of LDP, determines the degree of privacy protection of the 
data on the one hand and the degree of data availability on the other hand. Song et al. designed the 
PRR mechanism without considering the LDP and lacked a quantitative representation of the degree 
of privacy protection. In this paper, we design the Local Differential Privacy-Adaptive Personalized 
Randomized Response (LDP-APRR) mechanism to satisfy the local differential privacy, and the 
formal definition of LDP-APRR is:

P y x

e

e k
y x

e k
y x

i

w

w i

w i

i

i

i

LDP-APRR
|

,

,
( ) = + −

=

+ −
≠
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( )

e

e

e

1
1
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 (1)

where y  denotes the perturbation result of the true sensitivity value x
i
, and e w

i( )  denotes the 
functional relationship between the sensitivity weight w

i
 of the sensitivity value x

i
 and the privacy 

budget e , as denoted in Section 4.1.2.
LDP-APRR determines the data sensitivity level through user scores, and adaptively assigns 

privacy budgets to sensitive data through sensitivity weights to satisfy the different privacy needs of 

different users with the probability of e

e k

w

w

i

i

e

e

( )

( ) + −1
 retaining the true value, and the probability of 

1

e k
wie( ) + −1

 perturbed into other k -1  values.

Privacy budget as an important parameter in e-LDP  mechanism, reasonable allocation of 
privacy budget is the key to equilibrate the degree of privacy protection and data availability. In this 
paper, we introduce the concept of sensitive weights, and rationally allocate privacy budgets for 
different users’ privacy protection needs through user scoring strategies.

4.1.1 Setting of Sensitive Weights

Given that this paper utilizes the sensitive weight w
i
 to achieve the privacy budget adaptive allocation, 

the value of w
i
 needs to follow the following principles:

• Monotonicity. That is, the higher the sensitivity of the sensitivity value x
i
, the higher the value 

of w
i
, indicating a higher need for privacy protection.
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• w w
ii

n

i=∑ = >( )1
1 0 . w

i
> 0  denotes the presence of sensitive weights for all sensitive values 

x
i
, and w

ii

n

=∑ =
1

1  is used for adaptive allocation of the privacy budget.

4.1.2 Adaptive Allocation of Privacy Budget
Most of the existing personalized privacy protection schemes adopt the method of privacy budget 
fixed division for user selection for privacy protection, i.e., the privacy level is set in advance based 
on experience for user selection. In order to make the setting of privacy protection level more in 
line with the actual needs of users, drawing on the idea of user scoring strategy in B2B, different 
sensitive values are scored for sensitivity to determine the sensitivity level, and the privacy budget is 
adaptively allocated through the sensitivity weight to achieve the purpose of high utilization of the 
privacy budget and self-adaptation. The main steps are as follows:
Step 1:  Sensitivity level determining. First, each user scores the sensitivity of each sensitive value 
in the set of sensitive values, and the range of the sensitivity of the sensitive values can be set as 
[ , ] ( )

max max
S S S S
0 0

0> ≥ , the higher the sensitivity, the higher the corresponding scoring value; 
then, the user scoring situation is subject to the operation of removing the outliers, and according to 
the user scoring situation, the sensitivity is divided into L ³ 2  levels, and the higher the sensitivity 
is, the higher the level is; finally, the sensitivity of each sensitive value is determined as level 
l L
i
∈ −{ }0 1 2 3 1, , , , , , and when l

i
= 0 , it represents that privacy protection is not required and 

the data is not perturbed.
Sensitivity value weights calculating. The higher the sensitivity level, the higher the corresponding 
sensitive value weight. Assuming that the sensitivity level of a certain sensitive value x

i
 is l

i
, the 

corresponding sensitive value weight W
li

 for l
i
 can be expressed as:

W
l

L L
l L

l
i

ii
=

−( )
∈ −





2

1
1 1, ,  (2)

Once the sensitivity level l
i
 of the sensitivity value x

i
 is determined, its corresponding sensitivity 

value weight is: w W
i li
= .

Privacy budget adaptive allocating. Since the larger the sensitivity level, the higher the sensitivity 
weight, i.e., the more privacy protection is needed, the smaller the privacy budget assigned to it, the 
total privacy budget e  based on the sensitivity weight can be divided into e e e

1 2 1
, , ,

L- , i.e., 

e e=
=

−∑ ii

L

1

1 , so the privacy budget assigned to the sensitive weight w
i
 can be expressed as:

e e e e
i i L l

i

i
w W

L l

L L
l L

i
= ( ) = ⋅ =

−( )
−( )
⋅ ∈ −



−

2

1
1 1, ,  (3)

This user scoring strategy can adaptively calculate the sensitive value weight of each sensitive 
value, so as to assign a reasonable privacy budget to the sensitive value, and at the same time ensure 
that the privacy budget setting is more realistic. Based on the above analysis and steps, this paper 
proposes an adaptive personalized randomized response algorithm based on local differential privacy 
(LDP-APRR), and the specific perturbation process is shown in Table 1:

The algorithm first requires initial parameters to calculate the sensitivity weights corresponding 
to the sensitivity levels and the assigned privacy budget e

i
 using the publicly available sensitivity 



International Journal of Information Security and Privacy
Volume 18 • Issue 1

8

levels and privacy budgets; secondly, it calculates the disturbance probability based on the sensitivity 
levels of the sensitive values; and finally, it perturbs the data based on the disturbance probability 
and collects the distorted data y

i
 and the disturbance probability p

i
.

4.2 Privacy Analysis
Lemma 1. LDP-APRR algorithm satisfies e -LDP.

Proof: Let x x
i i
, ¢  denote different sensitive values under the same sensitive attribute, respectively. 

x x
i i
, ¢ undergoes the LDP-APRR mechanism to get the perturbation result y .

From the LDP-APRR algorithm and Eq. (1), it can be obtained that

Pr

Pr

y x
e

e k

y x
e k

i

i

i

i

i

|

|

( ) =
+ −

′( ) =
+ −











e

e

e

1
1

1

 

Then, it follows from Definition 1 that

Pr ( )

Pr ( )

Pr |

Pr |

/

/

R x y

R x y

y x

y x

e e k

e

i

i

i

i

i i={ }
′ ={ }

≤
{ }

′{ }
=

+ −( )e e 1

1 ee

e

i

i

k
e

+ −( )
=

1
 

Table 1. Algorithm: LDP-APRR algorithm

Input: True dataT , Privacy budget e , Sensitivity levelSL

Output: Distorted dataD y p
i i

= ( ),
1. Begin
2. Initialize true dataT
3. for each attribute X  in T  do:
4.  sl SL X L num sl k len sl= = =( ), ( ), ( )

5. for each value x
i

 in X  do:

6. if sl x
i
( )== 0 then:

7.  e
i i i i

p y x= = =0 1, ,
8. else:

9.  w
sl x

L L
w

i
i

i L sl xi
=

−( )
= ⋅−

2

1

( )
,

( )
e e

10.  y
x with probability p

e

e k

UniformRandom sl x w
i

i i

i

i

i

=
=

+ −

{ }( )

,

\ ,

e

e 1

iith probability q
e k

i
i

=
+ −











1

1e

11. end if
12. end for
13. end for
14. return D
15. End
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That is, each algorithm R i L
i
1 1≤ ≤ −( )  satisfy e

i
-LDP respectively.

Then by the Sequential Composition property of e -LDP, the above algorithmic sets 
R R R

L1 2 1
, , , −{ }  of sequence combinations satisfy e

il

L

=

−∑ 1

1 -LDP. In other words, the level of 

privacy protection is the sum of all privacy budgets e
il

L

=

−∑ 1

1 -LDP.

Another factorization of Eq. (3) and w w
ii

n

i=∑ = >( )1
1 0 yield that

e e e e e
il

L

L ll

L

L ll

L
w w

=

−

−=

−

−=

−∑ ∑ ∑= ⋅( ) = ⋅ = ⋅ =
1

1

1

1

1

1
1  

That is, the level of privacy protection is e -LDP.
It follows that the LDP-APRR satisfies e -LDP.

5. FReQUeNT ITeMS SUPPoRT ReCoNSTRUCTIoNG BASeD oN LDP-APRR

Data mining technology can mine the laws or knowledge with potential value from massive data, 
which can provide more effective services for users, among which Frequent Items Mining (FIM) is 
one of the hotspots in data mining research (Wang et al., 2018; Wang et al., 2022), the core of which 
is to find out the frequently occurring items in massive data. Due to the risk of data leakage in the 
mining process, in order to ensure data privacy and availability, this paper takes it as an application 
scenario of LDP-APRR, and its application process is shown in Figure 1.

Since the premise of FIM is that the item set support must be obtained, and the LDP-APRR 
has already perturbed the original dataset in a personalized way, the support must be reconstructed 
from the distorted data before frequent items mining can be carried out. Since the distorted data is 
obtained by perturbing the real data according to a certain probability, the support degree of the real 
data can be reconstructed according to the distorted data and its disturbance probability, and the 
specific process can be reconstructed according to Lemma 2.

Figure 1. Frequent items mining process based on LDP-APRR



International Journal of Information Security and Privacy
Volume 18 • Issue 1

10

Lemma 2. The number of items in the true data set is determined by the disturbance probability 
matrix and the number of items in the distorted data, which can be expressed as follows:

C P CT D= ⋅−1  

Where, C CT D,  are the number of items in the true dataset T  and the distorted dataset D , 
respectively, and P  is the disturbance matrix.

Proof: Suppose a sensitive attribute in T  has k  sensitive attribute values x x x
k1 2

, , ,{ } , denote 
the sensitive attribute values under the corresponding attributes in D  as y y y

k1 2
, , ,{ } , the probability 

that x
i
 is perturbed to y

i
 is denoted as p

i
, and the probability that the perturbation is 

y j i i k
j
∈( )[ , ) ( , ]1   is denoted as q

i
.

When k=3, the perturbation process is shown in Figure 2.
Where the number of x x x

1 2 3
, ,  are denoted as C C CT T T

1 2 3
, ,  in turn, and the number of perturbation 

data y y y
1 2 3
, , are denoted as C C CD D D

1 2 3
, , , then the following relation can be established according 

to the perturbation process in Fig. 2:

C p C q C q C

C q C p C q C

C q C

D T T T

D T T T

D T

1 1 1 2 2 3 3

2 1 1 2 2 3 3

3 1 1

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ ++ ⋅ + ⋅








 q C p CT T

2 2 33

 

Figure 2. LDP-APRR based k-element symmetric channel modeling (k=3)
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⇒ = ⋅C P CD T  (4)

where P 、 CT  and CD  are shown below:

P
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From Eq. (4), the calculation of the number of items CT  requires the inverse calculation of P . 
The number of items CT is:

C P CT D= ⋅−1  (5)

Similarly, the support reconstruction can be computed by Eq. (5) for the K-element attribute 
1-item set, when P , CT , and CD  are:
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6. eXPeRIMeNTS

6.1 Data and Parameter Settings
In order to verify the availability of distorted data, the method in this paper is applied to frequent 
items mining and compared with GR-PPFM and MASK in the same application scenario on the real 
shopping basket count set Basket. Basket is the real shopping basket data of a food supermarket, the 
average length of the transactions is 3, the total number of transactions is 940, and the total number 
of items is 11, including fruitveg, freshmeat, dairy, cannedveg, cannedmeat, frozenmeal, beer, wine, 
softdrink, fish and confectionery. Since the data utility in this paper is validated in a FIM scenario, 
the publicly available dataset basket for this scenario is used, which can be downloaded directly from 
https://github.com/PineCoffee/basket. And the TransactionEncoder function is utilized to convert the 
dataset into a Boolean two-dimensional array, where each row represents a transaction and each column 
represents a commodity, and if a transaction contains a certain commodity, then the corresponding 
element is 1, otherwise it is 0.

In the experiment, LDP-APRR and all comparison methods used the same scenario, evaluation 
criteria and data. The detailed description of these methods is as follows:

https://github.com/PineCoffee/basket
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• LDP-APRR:This method determines the data sensitivity level by user scoring strategy, and 
adaptively allocates privacy budget by sensitive weight to provide different levels of privacy 
protection for sensitive data attributes and attribute values.

• GR-PPFM:This method groups users according to the privacy protection requirements of different 
users, sets different privacy protection levels and corresponding randomized parameters for each 
group of user data, and provides different levels of privacy protection for users.

• MASK:This method provides the same level of privacy protection for the data using random 
numbers generated from predefined distribution functions based on simple probability distortion 
of the user data.

The experiment classifies privacy protection into five levels { , , , , }0 1 2 3 4 , according to the 
Information Security Level Protection Management Measures promulgated by the State Secrets 
Bureau on June 22, 2007, which represent Open, Restricted, Secret, Confidential, and Top-secret, 
respectively. According to the concept of the information entropy in information theory, the smaller 
the proportion of information, the more information it contains. A reasonable sensitivity level is 
assigned to each product according to the frequency of its occurrence. In real life, the sensitivity level 
can be set according to the user scoring strategy designed in 4.1.2. According to Eq. (2) and (3), the 
privacy budget for each sensitivity level is adaptively assigned, as shown in Table 2.

In the actual questionnaire survey or product purchase, the privacy protection demands of the 
answers “Yes” and “Purchased” are often higher than those of the answers “No” and “Not purchased”. 
Therefore, this paper makes a secondary division on the basis of allocating the privacy budget for 
each level. Since there are only two sensitive value types of “Purchase” and “Not purchased” in this 
experimental data set, namely “1” and “0”, there are only two types of sensitive value. As a result, in 
the secondary allocation of privacy budget, the sensitivity level is directly divided into two types, the 
secondary allocation of privacy budget is completed according to formula (4) and (5), and the disturbance 
probability is calculated according to formula (3), where the average disturbance probability is:

p =
+
⋅ +

+
⋅ +

+
⋅ +

+
⋅ +

1 1

2

4

11

0 92 0 77

2

2

11

0 86 0 71

2

2

11

0 77 0 65

2

2

11

0. . . . . . .665 0 57

2

1

11
0 84

+
⋅

=

.

.
 

Table 2. Parameter settings of dataset

Sensitivity Level L( ) Proportion r( ) Sensitivity Values x
i( ) Disturbance Probability p

i( )

0 (Open) 4/11
0 1

1 1

1 (Restricted) 2/11
0 0.92

1 0.77

2 (Secret) 2/11
0 0.86

1 0.71

3 (Confidential) 2/11
0 0.77

1 0.65

4 (Top-secret) 1/11
0 0.65

1 0.57
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6.2 experimental Results
6.2.1 Privacy Protection Evaluation
In this section, we mainly analyze the comparison of the privacy protection performance of GR-
PPFM, MASK and LDP-APRR methods, and evaluates them from four aspects: the degree of privacy 
protection, exposed information, personalization and whether or not the LDP is satisfied.
6.2.1.1 The Degree of Privacy Preservation
Definition 2. (privacy) (Rizvi & Haritsa, 2002) The degree of privacy protection corresponding to 
the perturbation probability p , is denoted as:

privacy R p= −1 ( )  (6)

where R p aR P a R P( ) ( ) ( ) ( )= + −
1 0

1 , R P
1
( )  denotes the probability that a “1” can be 

reconstructed from the perturbed data, R P
0
( )  denotes the probability that a “0” can be reconstructed 

from the perturbed data, and a  denotes the proportion of the data accounted for by “1”.
Since the data protection of “Yes” and “Purchased” is of more valuable when filling out a 

questionnaire or purchasing a product, the privacy protection in this paper only considers the case of 
“1”, so a  is 1, and the privacy protection degree is privacy R p= −1

1
( ) . Let the random perturbation 

probability be p , the average support of the item is s , then R P
1
( )  can be expressed as follows:

R P
p s

p s ps

p s

p s p s1

2 2

1 1

1

1 1
( )

( )( )

( )

( ) ( )
=

− − +
+

−
− + −

 (7)

In this paper, the data are categorized into five groups g = { , , , , }1 2 3 4 5  according to the sensitivity 
level, and different levels correspond to different privacy budgets, perturbation probabilities, and 
different degrees of privacy protection, and Guo et al., (2021) defined the minPrivacy, the maxPrivacy, 
the avgPrivacy, and the overallPrivacy, as follows:

Definition 3. (minPrivacy) The degree of privacy protection corresponding to the lowest privacy 
level, denoted as:

minPrivacy privacy g g= =min{ ( ) | , , , , }1 2 3 4 5  (8)

Definition 4. (maxPrivacy) The degree of privacy protection corresponding to the hightest 
privacy level, denoted as:

maxPrivacy privacy g g= =max{ ( ) | , , , , }1 2 3 4 5  (9)

Definition 5. (avgPrivacy) Average of the degree of grouped privacy protection corresponding 
to multiple privacy levels, denoted as:

avgPrivacy privacy g
gg

=
=∑ r ( )
1

5  (10)

where r  denotes the percentage of privacy levels.
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Definition 6. (overallPrivacy) The degree of privacy protection corresponding to the smallest 
privacy level, denoted as:

overallPrivacy R p= −1
1
( )  (11)

The average support of items in the dataset basket is 27.08%, the average support of items is 
generally calculated from the real data, and in principle the real data is not available, the same real 
s  is unknown, the practical application can be estimated by sampling the value of s . Since this 
experiment only measures the degree of privacy protection for the sensitive value of “1”, the degree 
of privacy protection of this paper’s algorithm under the condition of known sensitivity level and 
privacy budget can be obtained by substituting s = 27 08.  and p

1
1= , p

2
0 77= . , p

3
0 71= . , 

p
4
0 65= . , p

5
0 57= . , p = 0 84.  into Eq. (6)-(11), where the minPrivacy is 0, the maxPrivacy is 

71.8%, the avgPrivacy is 40.2%, and the overallPrivacy is 43.4%.
The corresponding perturbation probabilities ′ =p

1
1 , ′ =p

2
0 9. , ′ =p

3
0 8. , ′ =p

4
0 7. , ′ =p

5
0 6. , 

′ =p 0 84.  for each level in the GR-PPFM method are brought into the same formula for calculation, 
and the minPrivacy is 0, the maxPrivacy is 70.6%, the avgPrivacy is 35.9%, and the overallPrivacy 
is 43.4%. The MASK method has only one privacy protection level with a perturbation probability 
of ′′ =p 0 84. , which is the same as the average perturbation frequency of GR-PPFM and LDP-APRR. 
Therefore, the overall privacy protection degree is 43.4% like GR-PPFM and LDP-APRR, and the 
specific results are shown in Table 3.

The single-parameter randomization MASK corresponds to only one degree of privacy protection, 
and in the experiments, the perturbation probability ′′ =p 0 84.  for MASK, the average perturbation 
probability ′ =p 0 84.  for the grouped multi-parameter randomization GR-PPFM, and the average 
perturbation probability p = 0 84.  for the method proposed in this paper, LDP-APRR, i.e., the average 
perturbation frequency of the above three methods is the same, so the overallPrivacy is the same; GR-
PPFM and LDP-APRR have the same minimum privacy level, so the minPrivacy is the same. Under the 
condition that the three methods have the same degree of the overallPrivacy, the satisfying local differential 
privacy method proposed in this paper improves the maxPrivacy by 1.2% and the avgPrivacy by 4.3%.
6.2.1.2 Privacy Protection Difference
The algorithm proposed in this paper is different from GR-PPFM and MASK methods in the degree 
of privacy protection, but there are also differences in personalization.GR-PPFM method only 

Table 3. Privacy of LDP-APRR vs. GR-PPFM, MASK

LDP-APRR GR-PPFM MASK

minPrivacy (%) 0 0

43.4
maxPrivacy (%) 71.8 70.6

avgPrivacy (%) 40.2 35.9

overallPrivacy (%) 43.4 43.4

Whether personalized attributes √ × ×

Whether personalized attribute values √ × ×

Whether LDP is satisfied √ × ×

the exposed information D, e D p p p p p, ( , ), ( , ), ( , ), ( , ), ( , )
1 1 2 2 3 3 4 4 5 5
r r r r r D p,
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considers the personalization of the user, ignoring that there are different privacy protection needs 
for the attributes of the sensitive data and their attribute values. MASK method adopts a single level 
of privacy protection as a whole, ignoring the user’s personalization needs. In this paper, on the 
basis of user participation in sensitivity scoring and comprehensive assessment of sensitivity level, 
personalized perturbation of sensitive attributes and values is carried out, which integrates user, 
attribute and attribute value considerations, and the algorithm proposed in this paper is more fine-
grained compared to GR-PPFM coarse-grained personalization.

Since all three algorithms use reconstruction mining for the distorted data, there is a certain risk 
of exposing the privacy information. MASK supports reconstruction needs to know perturbation 
probability p , and since all individuals use the same p , the miner knows exactly how each individual 
corresponds to the randomization parameter, i.e., by specifying an individual at random, the miner 
knows exactly what parameter the individual has used for the randomization transformation. GR-
PPFM requires the knowledge of perturbation probability p , its randomization parameters and its 
percentage r . The local differential privacy algorithm in this paper only needs to expose the total 
privacy budget e , which is less information compared to the other two methods and has higher 
security.

6.2.2 Mining Accuracy Evaluation
The research goal of this paper is to improve the usability of distorted data while protecting data 
privacy, and the reconstruction of distorted data deviates from the real data, which leads to errors 
in the mining results of frequent items, so the mining results are evaluated using the Identity Error.

Definition 7. (Identity Error q ) (Rizvi & Haritsa, 2002) Percentage of frequent item set mining 
error, divided into q-  and q+ :

q q− +=
−

∗ =
−

∗
| |

| |
%,

| |

| |
%

F F

F

F F

F
100 100  

where q+  denotes the frequent item overestimated rate, which represents the proportion of items 
that was originally not frequent items and then mistakenly recognized as frequent to the true frequent 
items; q-  denotes the frequent item underestimated rate, which represents the proportion of items 
that were originally frequent items and then mistakenly recognized as not frequent to the true frequent 
items.

This experiment focuses on verifying the usability of the LDP-APRR method to synthesize the 
perturbed data, the experimental parameters are set as shown in Table 2, and the effect of the support 
threshold minSup on the Identity Error (Figure 3) is analyzed through several experiments.

Figure 3(a) shows that the frequent item overestimated rate decreases with the increase of the 
minimum support threshold minSup, and the decreasing trend is consistent with GR-PPFM, which 
indicates that the algorithm proposed in this paper is still usable and has a lower error rate under 
the premise of ensuring data privacy. Figure 3(b) shows that the frequent items underestimated 
rate decreases with the increase of the minimum support threshold minSup, and the overall error 
rate is lower, indicating that the algorithm proposed in this paper has a higher mining accuracy. 
Among them, the increase of frequent items is mainly due to the fact that more “0” data are 
perturbed to “1”, which leads to the increase of “Not purchased” or “No” answer in the original 
data. “No” in the original data is perturbed to “Purchased” or “Yes”. In real life, users are more 
concerned about the privacy of information related to them, while the privacy protection demand 
for unrelated information is lower, so the perturbation frequency of “0” data can be set at a higher 
level to improve data usability.
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7. CoNCLUSIoN

Facing the sensitive data collection process, different users have personalized privacy protection 
needs for data security and usability, as well as personalized differences in the attributes and 
attribute values of the data itself. MASK adopts uniform randomization parameters and applies the 
same level of privacy protection level to all users, GR-PPFM takes into account the variability of 
privacy protection needs of different users and adopts grouped multi-parameter randomization of 
data protection to provide personalized privacy protection for users. However, GR-PPFM ignores 
the fact that the attributes and attribute values of the data itself also have the variability of privacy 
protection needs, for this reason, this paper proposes an adaptive personalized stochastic response 
algorithm based on local differential privacy, which determines the sensitivity level through user 
scores, adaptively allocates privacy budgets through sensitivity weights, and integrally considers 
the multifaceted needs of the user, attributes, and attribute values to construct a multifaceted, fine-
grained personalized privacy protection strategy, and synthesize a privacy dataset that satisfies 
differential privacy. Through experiments, it is verified that the three methods that are compared, 
have the same average perturbation probability, same overall Privacy, same minimum privacy level. 
And at the same degree of the overall Privacy, the proposed method in this paper improves the 
maxPrivacy by 1.2% and the avgPrivacy by 4.3% which shows minimal impact in the performance. 
This algorithm can be widely promoted and applied to scenarios such as medical, financial, and 
other sensitive data collection involving privacy, etc. However, our algorithm also has some 
limitations. The reconstruction of perturbed data deviates from the real data, which leads to errors 
in the mining results of frequent itemsets, such as the accuracy of frequent itemset identification 
in Figure 3. Therefore, how to improve the privacy data availability and whether the algorithm in 
this paper can be applied to other personalized privacy-preserving analysis algorithms will be our 
next research goal.
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