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Abstract

Image inpainting aims to repair the damaged region according to the known content in the
damaged image. Recently, image inpainting methods have poor effects on high-resolution
damaged images, and the research on the inpainting of large-area damaged images is
limited. Therefore, this paper proposes an image inpainting method based on Genera-
tive Adversarial Networks (GAN) inversion and autoencoder. This work consists of two
phases: first, the authors design an autoencoder-based GAN, which learns the mapping
from noise to low-dimensional feature maps by training a generator, and then converts
the generated feature maps into high-resolution images. Thus, the difficulty of learning
the mapping relationship is reduced. Second, the authors adopt the learning-based GAN
inversion to infer the closest latent code. The trained GAN is then used to reconstruct the
complete image. Finally, the authors compare their method with other classical methods on
the CelebAMask-HQ, Flickr-Faces-HQ, and ImageNet datasets. According to the quanti-
tative comparison, when the mask range is large, in other words, when the image has a
large area of damage, the authors’ method is superior to the comparison methods. Accord-
ing to the qualitative comparison, the structure of the high-resolution image inpainted by
the authors’ method is more reasonable and the texture details are more realistic.

1 INTRODUCTION

Image is a common form of information carrier in our life. The
integrity of information transmission can only be ensured if the
image is complete. Many computer vision tasks are based on
the analysis and processing of complete and clear images. How-
ever, the required image files are often damaged or obscured.
These phenomena can bring a serious impact on the implemen-
tation of these vision tasks. In order to ensure the integrity of
image information transmission, researchers have proposed a
series of methods, and image inpainting is an important research
direction in the field of digital image processing and computer
vision. It mainly achieves the purpose of inpainting the damaged
information in the image through computer vision and other
technologies.

Current image inpainting methods can be roughly divided
into two categories: traditional methods and deep learning
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methods. Traditional methods include: structure-based image
inpainting [1], texture-based image inpainting [2], and image
inpainting based on sparse representation [3]. Among them,
the structure-based image inpainting is implemented by partial
differential equations. However, the model robustness of such
methods is poor, and there are problems such as blurring
after image inpainting. The texture-based method uses the
texture of the known region to construct the damaged infor-
mation, which can effectively avoid the blurring problem of
the inpainting region. However, the ability to obtain high-level
semantic information is poor, and the performance is poor
when dealing with challenging images such as complex textures.
The method based on sparse representation can effectively
represent the known information of the image, but when the
inpainting area is large, the method is restricted by the limited
known information, and the inpainting effect is still not ideal.
With the rapid progress of deep learning theory in computer
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vision and other fields, image inpainting methods based on
deep learning in recent years mainly include two categories: (1)
Image inpainting methods based on deep convolutional (DC)
neural networks proposed by Liu [4] and Pathak [5] et al. (2)
The image inpainting method based on generative adversarial
networks proposed by Yeh et al. [6]. In 2018, Liu et al. [4]
proposed to apply the partial convolution algorithm to image
inpainting, so as to repair the damaged part of the image. This
method only inputs valid pixels in the uncorrupted regions
of the image, and it replaces the classical convolutional layers
with partial convolutional layers. This method achieves image
inpainting that is independent of the size of the initial damaged
part and does not require any post-processing, which is the
first time that CNN is used for image inpainting with irregular
shape damage. However, it is unreasonable to regard all pixels
as valid pixels when updating the Mask. In 2018, Yu et al.
[7] used Gated Convolution to optimize partial convolution,
so as to better realize the image inpainting of incomplete
parts with irregular shapes. However, excessive smoothing
and blurring may occur in the actual processing of images.
Yeh et al. [6] proposed an optimization-based GAN inversion
image inpainting method, which finds the closest latent code
by iterative inference. Even though it has high accuracy, it has
fatal drawbacks such as long inference time due to multiple
optimizations.

In the process of image inpainting, the above methods based
on deep neural networks often have poor inpainting effects
on high-resolution damaged images, and the research on the
inpainting of large-area damaged images is also limited. There
are several differences between high-resolution image inpaint-
ing and regular-size image inpainting: First, high-resolution
images have more pixels, thus capturing richer details and tex-
tures. In contrast, the low resolution of regular-size images may
suffer from large information loss in terms of details. Sec-
ondly, the inpainting of high-resolution images faces a greater
computational burden because the number of pixels increases
significantly, making the inpainting process of high-resolution
images require more time and computational resources. Based
on this, we propose an image inpainting method based on GAN
inversion and autoencoder. Compared with other methods, our
method mainly has the following contributions: (1) The pro-
posed method improves the training effect of high-resolution
image inpainting by reducing the difficulty of mapping learn-
ing and making GAN easier to train. (2) Our method adopts
a learning-based GAN inversion strategy and designs a novel
encoder to achieve the prediction of latent code from corrupted
images, resulting in more reasonable semantics and high-fidelity
results. (3) The quantitative comparison results show that our
method has higher inpainting quality than other classical meth-
ods when the inpainting task involves large areas of damage.
The qualitative comparison results show that the images gener-
ated by our method have clear boundaries and are visually more
reasonable.

In this paragraph, we introduce the work of this paper.
Firstly, in the related work section of this paper, we survey
the image inpainting methods in recent years, and then give
a comprehensive introduction to GAN and GAN Inversion.

In the Methods section, we introduce and illustrate our pro-
posed method in two stages. In the Experiment section, we first
explain the three datasets used, and then introduce our exper-
imental environment and data preprocessing. We compare and
analyze with other classical methods from both qualitative and
quantitative aspects of our experiments. Finally, in the Conclu-
sion section, we summarize the work content of this paper, and
expound on the existing shortcomings and the next work in the
future.

2 RELATED WORK

2.1 Image inpainting

In recent years, deep neural networks have made breakthroughs
in image inpainting. In this paper, the authors surveyed image
inpainting methods. In order to improve the degree of coor-
dination between the repair area and the surrounding area and
global, so that the image inpainting model can meet the tasks
of the high-resolution, irregularly damaged, area and multi-
scene, Iizuka et al. [8] proposed a global–local consistent image
inpainting algorithm (GL) in 2017 by combining generative
adversarial networks and convolutional neural networks. The
main architecture of GL is an inpainting network and two
discriminators (a global discriminator and a local discrimina-
tor) networks, which greatly improves the quality of image
inpainting. However, the processing effect is not good when
the area to be inpainted is large, and it is difficult to deal with
images with complex backgrounds. Sagong et al. [9] divided
the image inpainting task into the coarse network and the
fine network for parallel processing, which improved the effi-
ciency of inpainting. However, this algorithm is only suitable
for inpainting small mask regions. Yu et al. [10] proposed a
coarse-to-fine inpainting framework with a contextual attention
module. Zheng et al. [11] achieved a variety of image inpaint-
ing through VAE [12] probabilistic network, and achieved good
results. Nazeri et al. [13] used structural edges as auxiliary infor-
mation to improve the image inpainting effect. Yi et al. [14]
proposed a super-resolution image inpainting network with
context residual aggregation technology, which filled the gap
for super-resolution image inpainting and had efficient infer-
ence speed as a lightweight model. The autoencoder network
developed by [15] extracts the self-representation information
of the target modality and guides the generation model to fuse
the target information from multiple modalities. Through this
network, it effectively improves the cross-modal consistency
with the desired modality, thus greatly improving the perfor-
mance of image synthesis. The authors in [16] developed a
dual-path inpainting network with feedforward path and inver-
sion path, and designed a novel deformable fusion module to
align the feature maps of the two paths. Finally, the feedfor-
ward path fused the semantic features of the inversion path
to realize the image inpainting work. In order to solve the
problems existing in the above methods, we propose an image
inpainting method based on GAN inversion inference and
autoencoder.



WANG ET AL. 3

FIGURE 1 Generative adversarial networks architecture.

2.2 Generative adversarial networks (GAN)

GAN is a deep learning method proposed by Goodfellow et al.
[17] in 2014, which consists of two parameterized deep neural
networks. The network structure consists of two parts: genera-
tor and discriminator, and the game between the generator and
the discriminator is used to produce better output results. The
Generator extracts the latent distribution of data features from
the real training data samples through unsupervised learning,
and provides the generated data samples to the discrimina-
tor. The Discriminator produces a probability that estimates
whether the sample belongs to real training data or generated
data. Moreover, the discriminator feeds back the parameters that
need to be adjusted in the generated data to the generator. The
generator performs parameter tuning after receiving the signal
of the loss function that needs to be tuned. The loop is repeated
until the discriminator cannot tell whether the image transmit-
ted to it is from the generator output or the original image. In
this case, the output of the generator is very close to the orig-
inal sample image, while the output of the discriminator will
approximate a fixed probability value.

Figure 1 illustrates how GAN works. In Gan, the input z
to the generator is a random noise vector, which is usually
a vector of random numbers drawn from some distribution
(usually uniform or Gaussian). During the training of the gener-
ator, this random noise vector is continuously sampled at each
iteration and fed into the generator. The goal of the gener-
ator is to map this random noise vector into the data space
to generate realistic data samples, such as images. This pro-
cess typically involves the transformation and manipulation of
multiple neural network layers in order to capture features in
the training data from the generated data. The task of the dis-
criminator is to decide whether the input data is real (from
the real data distribution) or generated (from the generator).
Through adversarial training, the generator gradually learns to
generate more realistic data, making it difficult for the discrim-
inator to tell the difference between generated data and real
data.

The optimization formula of GAN is as follows:

min
G

max
D

V (D,G ) = Ex∼Px

[
log D (x )

]

+Ez∼Pz

[
log

(
1 − D

(
G
(
z
)))]

(1)

In this formula, V (D,G ) represents the objective func-
tion, E represents the expectation, x is the real image sample,
z represents the Gaussian noise input to the generator, G (z )
represents the image produced by the generator, and D(x ) rep-
resents the probability judged by the discriminator. More and
more studies [18, 19] have shown that GAN has an excellent

FIGURE 2 Illustration of GAN inversion. GAN, generative adversarial
networks.

performance in generating images, which has become the basis
of many image inpainting algorithms.

2.3 GAN inversion

In recent years, deep learning methods have made significant
progress in image inpainting, among which the deep learning
image inpainting method based on single feedforward infer-
ence is the mainstream method. Although image inpainting
methods with feedforward inference produce excellent enough
results, they are still less effective at producing reasonable
semantic structure, and some methods are insufficient for
large areas of corrupted images. GAN inverse image inpaint-
ing methods, which have received less attention in the past,
provide a new perspective to solve problems in feedforward
inference.

Given a trained generator G of a GAN model, it can gener-
ate a realistic image from a randomly sampled latent vector z
(Figure 2a). The GAN inversion method aims to find the latent
code z* that best matches the damaged image, and then invert
the latent code z* to the image by the pre-trained GAN. Thus, a
reconstructed image that is semantically similar to the corrupted
image is produced.

z∗ = argmin
z

L
(
M ⊙ G

(
z
)
,M ⊙ I

)
(2)

In this formulation, M represents the mask of the cor-
rupted image, which is a binary matrix with 0 representing
the damaged region and 1 representing the observed region. It
obtains the damaged image by Hadamard (⊙) operation with
the original image. The Hadamard operation is a per-element
operation used for the element-by-element multiplication of
two matrices of the same size. It should be noted that it is
different from the general matrix multiplication operation, but
it multiplies the elements of the corresponding position one
by one. For example, in Figure 9, we can obtain the cor-
rupted image IM below Figure 9 by performing Hadamard
operation on the uncorrupted original image I above and the
binary matrix mask M. L (⋅) represents all the loss functions.
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FIGURE 3 Our overall model framework.

z∗ denotes the latent code that best matches the damaged
image.

GAN inversion can be mainly divided into three categories,
one is learning-based GAN inversion, the other is optimization-
based GAN inversion, and the third is GAN inversion which
combines the first two types of methods. The learning-based
strategy (Figure 2c) is to train an encoder that can predict
the latent code from damaged images. The optimization-
based strategy (Figure 2b) is to iteratively optimize the latent
code by backpropagation to minimize the pixel-wise recon-
struction loss. In addition, some works combine these two
strategies. An encoder is first used to predict the latent code,
which is subsequently optimized using an optimization-based
strategy.

In addition to image inpainting tasks, GAN inversion has
been widely used in other computer vision tasks, such as image
editing [20, 21], super-resolution [22, 23], and style transfer [24,
25].

3 PROPOSED METHOD

In this section, we present our entire network architecture.
Our work consists of two phases, as shown in Figure 3. In

the first stage, we design an autoencoder-based GAN (inside the
dashed box in Figure 3), which learns a mapping from random
noise to low-dimensional feature maps by training a genera-
tor. Then, the feature maps generated by the generator are
converted into high-resolution images, so as to map the noise
distribution to the real image. In the second stage, we adopt the
learning-based GAN inversion strategy, fix the trained GAN,
and then design to train an encoder network to predict the clos-
est latent code from a given damaged image. When in the actual

FIGURE 4 Training of the autoencoder. The ‘Locked’ symbol indicates
that the training has been completed, ‘Unlocked’ symbol indicates that the
training is in progress, the same figure below.

test, we first obtain the closest latent code for a given damaged
image and reconstruct the full image using the trained GAN.

3.1 Autoencoder-based GAN

Compared with other image inpainting methods, the GAN-
based method improves the texture and colour processing effect
of the image, and reduces the dependence on the information
around the damaged area, which is more suitable for image
inpainting with large damaged areas. However, the shortcom-
ings of GAN are also obvious. Due to the complexity of the
mapping relationship from Gaussian noise to high-dimensional
images, it is very difficult to train GAN. With the improvement
of the resolution of the generated image, the difficulty of train-
ing gradually increases, and the phenomenon of mode collapse
is easy to occur, resulting in the lack of authenticity and single
images.

Accordingly, the GAN part of this paper is designed to
be composed of four parts: encoder, decoder, generator, and



WANG ET AL. 5

FIGURE 5 Autoencoder-based GAN training. Fixing the autoencoder part, training the generator, and discriminator. GAN, generative adversarial networks.

FIGURE 6 Training loss comparison between Gan with autoencoder and Gan without autoencoder. Left is the Loss change curve of the generator, right is the
Loss change curve of the discriminator.

discriminator. In addition to the traditional generator and dis-
criminator of GAN, an autoencoder network is added. The
autoencoder-based GAN training can be divided into the
following two steps:

The first step is to train the autoencoder independently
(Figure 4). The input of the encoder is a high-resolution original
image sample I, and the output is a low-dimensional feature
map FR extracted from the image. The input of the decoder
was the feature map FR, and the output was the restored
high-resolution image.

We use the more robust L1 loss to train the encoder
ER for dimensionality reduction and the decoder Dec for

dimensionality increase. We want to make sure that the image
input to the encoder and the image output from the decoder are
as consistent as possible:

La = ‖Dec (ER (I )) − I‖1 (3)

In this formula, I denotes the undamaged original image.
Step 2 (Figure 5) After the autoencoder training, we fix the

encoder ER and the decoder Dec and start training the genera-
tor G and the discriminator D. The generator input is Gaussian
Noise z and the output is the generated feature map FG. The
discriminator input has two parts, one is the feature map FR



6 WANG ET AL.

TABLE 1 Encoder EZ structure.

Module name Kernel Filters BatchNorm Non-linearity

Conv1 7 × 7 64 – ReLU

Conv2 5 × 5 128 Y ReLU

Conv3 5 × 5 256 Y ReLU

Conv4 3 × 3 512 Y ReLU

Conv5 3 × 3 512 Y ReLU

Conv6 3 × 3 512 Y ReLU

Conv7 3 × 3 512 Y ReLU

Fully Connected1 – 4096 Y ReLU

Fully Connected2 – 100 – –

extracted by the encoder from the high-resolution raw image,
and the other is the feature map FG generated by the genera-
tor. The output of the discriminator is a score between [0,1].
To ensure the authenticity of the final generated results, we use
the most used adversarial loss [17] in GAN to constrain the
discriminator D:

LD = −EI∼PI

[
log D (ER (I ))

]

−Ez∼Pz

[
log

(
1 − D

(
G
(
z
)))]

(4)

For the generator G:

LG = − Ez∼Pz

[
log D

(
G
(
z
))]

(5)

In this formula, I denotes the undamaged original image.
Ez∼Pz

means that z is random noise with Gaussian distribution.
In our autoencoder-based GAN, the encoder is used to

reduce the dimensionality of the high-resolution image to
the low-dimensional feature space, and the decoder is used
to up dimension the low-dimensional feature map to the
high-resolution image. The generator is used to generate the
low-dimensional feature map, and the discriminator is used to
determine whether the low-dimensional feature map is directly
extracted from the original image by the encoder ER or gener-
ated by the generator. In this way, the effect of high-resolution
image inpainting is improved. By learning low-dimensional
feature maps instead of going directly to high-dimensional
images, we make the GAN easier to train and reduce the like-
lihood of mode collapse, making the resulting images more
realistic. The generator and the discriminator of our GAN fol-
low the same architecture as the widely used DC-GAN [26].
The encoder ER used for dimensionality reduction consists of
three downsampling layers, all with 4 × 4 convolution ker-
nels, and the number of convolution kernels is 64, 128, and
16, respectively. LeakyReLU, LeakyReLU, and Tanh are used as
activation functions in turn. The decoder Dec for the raised
dimension consists of three upsampling layers, with the size
of the convolution kernels all being 4 × 4 and the num-
ber of convolution kernels being 128, 64, and 3, respectively.
The activation functions are successively ReLU, ReLU, and
Tanh.

As can be seen from Figure 6, our autoencoder-based Gan
starts from Epoch = 9, the loss values of the generator and
discriminator remain basically stable, and the network training
has converged. However, for Gan without autoencoder, starting
from Epoch = 17, the generator loss suddenly increases sharply
and the discriminator loss suddenly decreases. It can be seen
that the Gan training undergoes mode collapse. This training
process comparison proves that our method makes the training
of GAN easier by reducing the difficulty of mapping learning,
thereby improving the training effect of high-resolution image
inpainting.

3.2 Image inpainting network based on
GAN inversion

In the GAN inversion path, our goal is to find the closest latent
code of the damaged/masked image. Although the inversion
strategy based on optimization used by Yeh et al. [6] can find
the exact latent code, it almost has an unacceptable inference
time. In order to ensure the efficiency of inference, we choose
the learning-based inversion strategy for the inversion inference
of GAN.

In this stage, we fix the trained GAN, and then design to train
an encoder EZ to predict the most appropriate latent code z
from the damaged image, and then use the GAN trained in the
previous stage to reconstruct the full image with the latent code
z as input

z = Ez (IM ) (6)

In this formulation, IM is the damaged image in the input
encoder EZ.

Table 1 shows the specific structure of our encoder EZ
with a total of nine layers. Among them, convolutional lay-
ers are used in the first seven layers, fully connected layers
are used in the last two layers, and batch normalization
operation and activation function are not used in the last
layer to ensure that the final output conforms to the PZ
distribution.

In the inversion path training (Figure 7), our input images are
damaged/masked images to simulate the situation in the real
environment to improve the effect in the future practical scene.
In this paper, we follow the photo-realism loss LP and recon-
struction loss Lr used in Lahiri [27] to train the encoder Ez to
extract the latent code of the image. LP loss and Lr loss can
ensure that the repaired output image is located near the true
data manifold, which greatly improves the quality of the repaired
image

Lp = log
(
1 − D

(
G
(
Ez (IM )

)))
(7)

Lr = ‖I − Iout‖1 (8)

In the above formula, where Iout = Dec (G (Ez (IM ))), IM is
the damaged image, EZ is the encoder that extracts the latent
code of the damaged image, G is the generator, and D is the
discriminator.
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FIGURE 7 GAN Inversion path training. GAN, generative adversarial networks.

FIGURE 8 The process of our proposed method in the actual image
inpainting.

The total loss function for the inversion part can be
summarized as follows:

L = Lp + 𝜆Lr (9)

The best results were obtained when λ was set to 20
according to the experience in the experiment.

Figure 8 shows the whole process of image inpainting by our
method in the actual inpainting task. Instead of iteratively opti-
mizing the latent code z for each test image during inference,
we take a learning-based GAN inversion approach, resulting in
more reasonable semantics and high-fidelity results.

4 EXPERIMENT

4.1 Datasets

In order to verify the robustness and generalization ability of
our method, we adopt the public test datasets CelebAMask-
HQ [28], Flickr-Faces-HQ (FFHQ) [18], and ImageNet [29].
CelebAMask-HQ is composed of 30,000 high-resolution face
images of 1024 × 1024 pixels collected from CelebA [30],
which can be said to be the HD version of CelebA. Each

image has corresponding annotation data, which can be used
for the training and testing of generative adversarial networks
such as face recognition and image generation. We randomly
split 27,000 images from them for training and the remaining
3000 images for testing. FFHQ is a high-quality image dataset of
faces scraped from Flickr. It consists of 70,000 high-quality face
images of 1024 × 1024 pixels with large differences in age, eth-
nicity, and image background, from which we randomly divide
65,000 images for training and the remaining 5000 images for
testing. ImageNet is a large-scale manually annotated dataset for
visual object recognition research, containing tens of millions of
images with over 20,000 categories. From the Person category,
we randomly selected 30,000 face images, randomly divided
27,000 images for training, and the remaining 3000 images for
testing.

As for the mask dataset, we use the mask dataset proposed
by Liu et al. [4] in 2018, which is widely used in image inpainting
tasks. It contains 12,000 mask test images with different scales,
and the mask image size is 512 × 512. Their masks are classified
based on their proportion of area relative to the entire image size
(1%–10%, 10%–20%, 20%–30%, 30%–40%, 40%–50%, 50%–
60%). To validate our method, we resized images to 512 × 512
resolution on FFHQ, and ImageNet for experiments, and we
used 1024 × 1024 resolution images on CelebAMask-HQ for
experiments.

4.2 Experimental environment and data
preprocessing

Our experiments are implemented in Pytorch, a deep learning
framework, and we use mini-batch gradient descent to update
the parameters. We used an NVIDIA TITAN Xp GPU(12GB)
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FIGURE 9 Data preprocessing.

with batch_size set to 4, all loss functions were optimized using
Adam optimizer, and the learning rate was set to 0.0001 to fine-
tune the network until the network converged.

Figure 9 shows the preprocessing results of the data, where
the top part of the picture shows the undamaged original image
I, and the bottom part shows the damaged image IM after
adding the random mask. In order to verify the ability of the
model, each image is randomly superimposed with random
mask regions and input to the model for training and testing.

4.3 Qualitative comparisons

The result comparison of image inpainting mainly includes
qualitative comparison and quantitative comparison. Qualita-
tive comparison is mainly to observe whether the colour of the
inpainted image is appropriate, whether the grain is consistent,
whether the inpainted information is reasonable, and whether
the inpainted traces are obvious.

In order to qualitatively evaluate the results after image
inpainting, we compare the proposed model with several classi-
cal models such as Pconv [4], Gated Conv [7], and CoModGAN
[31]. Figure 10 shows the qualitative visual comparison results of
each model. It can be seen that the results generated by the two
methods Pconv and Gated Conv contain partially distorted con-
tent, and there are certain artefact effects and colour differences.
The generated results and performance of the CoModGAN
model are similar to our effect, but it usually produces discor-
dant content and unmasked regions. Our method is better at
mining information from the inside of the image, and can gener-
ate more semantic results with the help of the GAN model that
has been trained in advance. Therefore, it can better deal with
different ranges of mask regions, and produce more realistic and
reasonable high-resolution image results.

4.4 Quantitative comparisons

The more widely used evaluation indicators for quantitative
comparison of image inpainting are mainly as follows: struc-

tural similarity (SSIM) [32], peak signal-to-noise ratio (PSNR),
Frechet Inception Distance (FID) [33], and Learned Percep-
tual Image Patch Similarity (LPIPS) [34]. SSIM measures the
overall similarity of two images from three aspects of image
brightness, structure, and contrast, and the value range is [0,1].
The SSIM value is closer to 1, indicating that the similarity
of the two images is higher and the image inpainting quality
is more effective. PSNR is the most widely used measure-
ment method, which calculates the difference of pixel values
between two images to evaluate the quality of image inpainting.
The larger the value of PSNR, the more realistic the samples
generated by the generation network, and the better the inpaint-
ing quality. The FID value calculates the distance between the
distributions of two multidimensional variables, and can rep-
resent the diversity and quality of the generated image. The
smaller the FID value, the better the diversity of the image,
and the better the quality. LPIPS considering the factors of
human visual perception, is closer to human to judge the qual-
ity of the images. A lower value of LPIPS indicates that the
two images are more similar, and vice versa, the difference is
greater.

In order to quantitatively evaluate the image inpainting
results, we compare our method with other methods on three
data sets, respectively. The methods we compare in our exper-
iments are all open-source methods, and we use the same
experimental conditions to ensure a fair comparison.

From the comparison results of different mask proportions
in the FFHQ dataset in Table 2, it can be seen that the image
inpainting performance of each model is relatively similar when
the mask proportion is small, and the inpainting performance
of each model gradually becomes worse with the increase of
the mask proportion. When the mask proportion is 1% to
20%, the results of our model are slightly worse than those of
CoModGAN, which may be due to the fact that there is no com-
plex structure missing in the image in the face of small mask
occlusion, so this situation occurs. When a higher percentage of
mask, such as the range of 20% to 60% in Table 2, our model
shows more excellent performance; it is also shown that when
inpainting task involving a large area missing, our method has
a higher quality of inpainting. In terms of the efficiency of the
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FIGURE 10 Comparison of model qualitative image inpainting results.

TABLE 2 Comparison results of image inpainting of models on FFHQ.

Pconv Gated Conv CoModGAN Ours

Mask PSNR SSIM FID LPIPS PSNR SSIM FID LPIPS PSNR SSIM FID LPIPS PSNR SSIM FID LPIPS

1%–10% 32.489 0.956 1.94 0.209 32.646 0.965 1.50 0.203 33.451 0.973 1.39 0.188 32.954 0.970 1.46 0.192

10%–20% 27.628 0.896 3.30 0.216 27.958 0.942 2.41 0.212 28.434 0.948 2.10 0.207 28.214 0.947 2.25 0.205

20%–30% 23.654 0.816 5.44 0.227 24.423 0.883 3.98 0.224 24.844 0.900 3.92 0.220 24.972 0.912 3.88 0.218

30%–40% 21.657 0.774 8.10 0.239 22.163 0.853 6.68 0.230 22.426 0.861 5.69 0.225 22.450 0.862 5.22 0.222

40%–50% 18.646 0.623 13.21 0.375 19.374 0.796 9.60 0.312 20.154 0.815 8.42 0.246 20.312 0.819 8.23 0.235

50%–60% 15.437 0.583 19.36 0.446 16.842 0.660 16.41 0.425 17.528 0.742 13.34 0.412 17.814 0.759 11.58 0.356

FF-HQ, Flickr-Faces-HQ; FID, Frechet inception distance; LPIPS, learned perceptual image patch similarity; PSNR, peak signal-to-noise ratio; SSIM, structural similarity.

TABLE 3 Comparison results of image inpainting of models on
ImageNet.

Method PSNR SSIM FID LPIPS

Pconv 23.786 0.788 8.20 0.276

Gated Conv 24.218 0.862 6.53 0.258

CoModGAN 24.672 0.885 5.62 0.232

Ours 24.894 0.907 5.31 0.216

FID, Frechet inception distance; LPIPS, learned perceptual image patch similarity; PSNR,
peak signal-to-noise ratio; SSIM, structural similarity.

method, the average running time of our method is 0.081 s per
image of the FFHQ dataset on NVIDIA TITAN Xp GPU.

TABLE 4 Comparison results of image inpainting of models on
CelebAMask-HQ.

Method PSNR SSIM FID LPIPS

Pconv 19.875 0.754 16.56 0.426

Gated Conv 22.168 0.805 13.20 0.387

CoModGAN 24.594 0.874 5.82 0.246

HiFIll 24.586 0.870 5.35 0.249

Ours 24.597 0.875 5.28 0.244

FID, Frechet inception distance; LPIPS, learned perceptual image patch similarity; PSNR,
peak signal-to-noise ratio; SSIM, structural similarity.

Tables 3 and 4 show the comparison results of each model
on ImageNet and CelebAMask-HQ datasets, respectively. In
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order to fully illustrate the performance of our method in high-
resolution images, we specially add HiFIll [14], which focuses
on high-resolution image inpainting, to conduct comparative
experiments on CelebAMask-HQ. Tables 3 and 4 show that
our method is better than the comparison methods in the four
indicators of PSNR, SSIM, FID, and LPIPS, which proves the
performance of our method.

5 CONCLUSION

In this paper, an image inpainting method based on GAN
inversion and autoencoder is proposed to solve the problem
of high-resolution damaged image inpainting and large-area
damaged image inpainting. The proposed method is compared
with other classical methods on the CelebAMask-HQ dataset,
FF-HQ dataset, and ImageNet dataset. From the results of qual-
itative comparison with other methods, it can be seen that the
image structure generated by our method is more reasonable
and the texture details are more realistic. Because our method
is better at mining information from the inside of the image, it
can generate more semantic results with the help of the GAN
model that has been trained in advance, thus producing more
realistic and reasonable high-resolution image results. From the
results of quantitative comparison, it can be seen that when the
mask ratio is in the range of 20% to 60%, that is, when the
image has large area damage, our model shows extremely excel-
lent performance, which proves that the proposed method has a
higher inpainting quality when the inpainting task involves large
area damage. In view of the phenomenon that the inpainting
results of the proposed model are slightly worse than those of
CoModGAN when the mask ratio is small in the quantitative
comparison, further work will propose new solutions to this
problem. In addition, the image inpainting of complex scenes
is also the development trend in the future, and is also the focus
of our next work.

Finally, our proposed method can be easily extended to other
image tasks, such as image generation, image editing, image
denoising, and image super-resolution. Image retrieval [35] has
been a very popular and interesting field in recent years, and
content-based image retrieval is also a field for future research
and exploration of the method proposed in this paper. In
addition, we will try to apply model transfer to video inpainting.
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