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Abstract In this paper we consider a nonconvex model of recovering low-rank matrices
from the noisy measurement. The problem is formulated as a nonconvex regularized least
square optimization problem, in which the rank function is replaced by a matrix minimax
concave penalty function. An alternating direction method with a continuation (ADMc)
technique (on the regularization parameter) is proposed to solve this nonconvex low rank
matrix recovery problem.Moreover, under somemild assumptions, the convergence behavior
of the alternating direction method for the proposed nonconvex problems is proved. Finally,
comprehensive numerical experiments show that the proposed nonconvex model and the
ADM algorithm are competitive with the state-of-the-art models and algorithms in terms of
efficiency and accuracy.
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1 Introduction

The matrix completion (MC) problem is to recover an unknown matrix from a small amount
of observations. If the desired matrix has a low rank structure, this approach is possible. The
mathematical formula reads:

min
X∈Rm×n

rank(X), s.t.
∑

(i, j)∈�

|Xi, j − Mi, j |2 ≤ δ, (1)

where � is a given set of the index pairs (i, j), and δ > 0 admits the possible noise in the
measurement. The MC problem has a lot of applications in online recommendation system
and collaborative filtering [1], such as the Joster joke data [2], DNA data [3]and the famous
Netflex problem [4]. A general form of the MC problem is the affine rank minimization
problem, which can be expressed as

min
X∈Rm×n

rank(X), s.t. ‖A(X) − b‖2 ≤ δ, (2)

where X ∈ R
m×n is an unknown low rankmatrix,A:Rm×n → R

p is a linear map and b ∈ R
p

is a given measurement vector. This problem is also widely applied in system identification
[5], optimal control [6] and face recognition [7].

Due to the combinational nature of the function “rank(·)” , these rank minimization prob-
lems (1) and (2) are NP-hard problems in general [8]. One popular approach is utilizing the
nuclear norm as convex relaxation [9–11]. The nuclear norm of X defined as the sum of its
singular values, i.e., ‖X‖∗ = ∑r

i=1 σi (X), where we assume the matrix X has r positive
singular values of σ1 ≥ σ2 ≥ . . . ≥ σr > 0, is the best convex approximation of the rank
function over the unit ball of matrices with norm less than one [8]. Therefore, the problem
(2) can be transformed into the following nuclear norm minimization problem:

min
X∈Rm×n

‖X‖∗, s.t. ‖A(X) − b‖2 ≤ δ, (3)

or its equivalent Lagrangian form:

min
X∈Rm×n

‖X‖∗ + γ

2
‖A(X) − b‖22, (4)

where δ ≥ 0 is the noise level and γ is the regularization parameter which balances the
fidelity term and the rank of the solution. The nuclear norm minimization problems are
convex optimization problems, which admit many efficient algorithms such as SDPT3 [12],
singular value thresholding (SVT) [13], fixed point continuation with approximate SVD
(FPCA) method [8], proximal point algorithm [14], accelerated proximal gradient(APG)
algorithm [15] and ADM type algorithms [16,17], just to name a few.

However, there are some strict conditions needed for recovering successfully the low rank
matrix via the nuclear norm [9,18]. Moreover, the nuclear norm minimization problem may
yield thematrix withmuch higher rank than the real one, and can not recover a low rank target
with minimum measurements [9]. Another limitation of the nuclear norm minimization is
its bias caused by shrinking all the singular values toward zero simultaneously, thus the rank
function may not be approximated well [19].

Therefore, more efficient models are needed for solving the low rank matrix recovery
problems. Due to the recent development of nonconvex penalties in sparsity modeling, many
researchers have shown that using the nonconvex term to approximate the �0 norm is better
than adopting the �1 norm, where the nonconvex penalties may be �p, p ∈ (0, 1) [20],
capped-�1 [21], smoothly clipped absolute deviation (SCAD) [22] and a minimax concave
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penalty (MCP) [23]. These methods have been extended to the low rand matrix restoration
recently. For example, the �p penalty form is studied by many researchers (see e.g. [24–26])
and the matrix MCP penalty is proposed in [27] for the robust principle component analysis.
The work of Fan and Li [22] showed that the nonconvex sparse recovery models enjoy better
properties than the convex one and the sparse vector MCP model also performs well [23].
Therefore, we are interested in studying the matrix MCP penalty on low rank minimization
problem in this paper. Firstly, the sparse scalar MCP function is defined by

ρλ,τ (t) = λ

∫ |t |

0

(
1 − x

λτ

)

+
dx =

{
λ|t | − t2

2τ , if |t | ≤ λτ,
1
2τλ2, if |t | > λτ,

for τ ∈ (1,∞). Then similar as the nuclear norm and the rank of matrices [18], the MCP
function of a given matrix X is defined by

‖X‖λ,τ =
r∑

i=1

ρλ,τ (σi (X)) =
r∑

i=1

λ

∫ σi (X)

0

(
1 − x

λτ

)

+
dx, (5)

where σi (X) is the singular values of X and ρλ,τ (·) is a scalar MCP function defined above.
One can observe that (see Sect. 2.1 for detail) the thresholding function of the scalar MCP

converges to that of �1 function and �0 function, as τ → ∞ and τ → 1+, respectively.
Moreover, it has been shown in [23] that the MCP function satisfies: unbiasedness, sparsity,
and continuity at the origin, which implies the MCP to be a good sparsity promoted penalty
function [22]. Some efficient algorithms for the MCP sparse optimization can be found in
[21,28]. Due to the good properties of the scalar MCP function, the ‖X‖λ,τ has been used in
robust principal component analysis problem [27]. Some other properties of the matrix MCP
function are also obtained in [27]:

(1) ‖X‖λ,τ ≥ 0, with equality holds if and only if X = 0;
(2) ‖X‖λ,τ is an increasing function of τ , ‖X‖λ,τ ≤ ‖X‖∗, and limτ→∞ ‖X‖λ,τ = ‖X‖∗;
(3) ‖X‖λ,τ is unitarily invariant; that is, ‖UXV ‖λ,τ = ‖X‖λ,τ whenever Um×m and Vn×n

are orthogonal matrix.

Wewill consider the followingmatrixMCP regularized least square (MCP-RLS) problem:

min
X∈Rm×n

‖X‖λ,τ + 1

2
‖A(X) − b‖22. (6)

If we choose linear operator A as a componentwise projection, it becomes the matrix
completion problem:

min
X∈Rm×n

‖X‖λ,τ + 1

2

∑

(i, j)∈�

|Xi, j − Mi, j |2, (7)

where � is the given set of index pairs, λ is the regularization parameter.
For any given regularization parameter λ, the MCP-RLS problem is highly nonlinear,

nonsmooth and nonconvex, it is not trivial to find an efficient algorithm. In this work we apply
an alternating direction method (ADM) for solving it. The ADM is very efficient method
for solving a lot of sparse promoted optimization problems and has widely application in
signal and image processing, machine learning, statistics and matrix completion problems,
see [29–31] and the references cited there. The matrix MCP function also admits a separable
property, which can be efficiently solved by ADM.

In addition, the regularization parameter λ balances the low rank property of the solution
and the fidelity of the measurement, it plays an important role in getting a satisfactory
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reconstruction. To obtain a good regularization parameter,we couple a continuation technique
with ADM, i.e., given a decreasing sequence of parameter {λs}s , and apply the ADM to solve
the λs+1-problem with the initial guess from the λs-problem. Moreover, the regularization
parameter λ can be chosen automatically without much additional cost when it is equipped
with a proper stop rule. In this paper, we adopt a discrepancy principle (DP) or Bayesian
information criterion (BIC) as the parameter selection rule to select a suitable λ̂ and solution
X (̂λ) during the continuation process, see similar approach as in [32,33].

The main contribution of this paper is to propose the matrix MCP penalty for low rank
matrix restoration and to extent the ADM (ADMc) for solving the nonconvex matrix low
rank recovery problems and give certain theoretical analysis. To the best of our knowledge,
this is the first paper for the MCP-RLS model. The ADM is very efficient and popular for
the convex nuclear norm minimization problems, but the work on the ADM for solving
the nonconvex rank minimization is very limited. Moreover, the ADM combining with the
continuation technique on the regularization parameter is easy to implement and efficient for
the nonconvex matrix rank minimization problems.

The rest of this paper is organized as follows. In Sect. 2, we firstly give some preliminaries
on the different penalty functions and their corresponding thresholding operators, which are
basis for developing the proposedADM in this paper. Thenwe construct theADM for solving
the proposed nonconvex problem and give the convergence result of the proposed method.
In Sect. 3, some numerical comparison with state-of-the-art models and algorithms on both
simulated and real data are reported. Finally, we conclude the paper with some remarks in
Sect. 4.

2 Algorithm and Convergence Analysis

In this section, we mainly construct our ADM to solve the problem (6). We begin with
reviewing some preliminaries on the sparse promoted scalar functions including �1, �0,MCP
to illustrate the advantage of MCP function over the other two. Subsequently, we show that
the resulting subproblem has closed-form solution. Finally, we give the proposed ADM and
its continuation version ADMc for solving (6) and show its convergence.

2.1 Preliminaries

Firstly, we consider the sparse promoted scalar functions ρλ,τ = �1, �0, MCP and their
thresholding operators defined as

Sρ
λ,τ (v) = argmin

u∈R
{
(u − v)2/2 + ρλ,τ (u)

}
.

The three penalties and their thresholding operators are shown in Table 1 and Fig. 1.
Form Table 1 and Fig. 1, one can observe that among the three functions, MCP function

is the only one that is continuous, sparsity promoting and unbiasedness. And these three
properties together guarantee the MCP regularized problem enjoys nice statistical property
[22,23]. Intuitively, the advantage of the scalarMCP function can be inherited tomatrixMCP
case, which is the key motivation to consider using MCP-RLS model to recover low rank
matrices

Next, we review a result that was established by Lu and Zhang [37] which is helpful to
get closed form solutions of the resulting subproblem.
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Table 1 The penalty functions ρλ,τ (t) and their thresholding operators Sρ
λ,τ (v)

Sparse vector case

Penalty ρλ,τ (t) Sρ
λ,τ (v)

Lasso [34,35] λ|t | sgn(v)max(|v| − λ, 0)

�0 [36]

{
λ t 	= 0
0 t = 0

⎧
⎪⎨

⎪⎩

0 |v| <
√
2λ{

0, sgn(v)
√
2λ

}
|v| = √

2λ

v |v| >
√
2λ

MCP [23]

⎧
⎨

⎩
λ

(
|t | − t2

2λτ

)
|t | < τλ

λ2τ
2 |t | ≥ τλ

⎧
⎨

⎩

0 |v| ≤ λ

sgn(v)
τ(|v|−λ)

τ−1 λ ≤ |v| ≤ λτ

v |v| ≥ λτ

0
0

t
0

0

t
0

0

t
0

0

t

0 MCP

0
0

t
0

0

t

1

(a)

(c)

(b)

Fig. 1 Functions (left panel) and their thresholding operators (right panel). Here λ = 1.2, and τ = 2.7 for
the MCP function

Proposition 2.1 Let ‖ · ‖ be a unitarily invariant norm on R
m×n, and let F : Rm×n → R

be a unitarily invariant function. Suppose that X ⊆ R
m×n is a unitarily invariant set. Let

matrix A ∈ R
m×n be given, q = min(m, n), and let φ be a non-decreasing function on

[0,∞). Suppose that U�(A)V� is the singular value decomposition(SVD) of A, then X∗ =
UD(x∗)V� is an optimal solution of the problem

min F(X) + φ(‖X − A‖) s.t. X ∈ X , (8)

where x∗ ∈ R
q is an optimal solution of the problem

min F(D(x)) + φ(‖D(x) − �(A)‖) s.t. D(x) ∈ X . (9)

where D(x) denotes a m × n matrix with Di j (x) = xi if i = j , and Di j (x) = 0; �i i (A)

= σi (A) for 1 ≤ i ≤ q and �i, j (A) = 0 for all i 	= j .

The proof of this proposition is given in [37]. As a consequence of Proposition 2.1, we
can show that the following problem has a closed-form solution. It is a key step for solving
the one subproblem of the ADM.
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Corollary 2.1 Let μ > 1/τ , A ∈ R
m×n, and q = min(m, n). Suppose that U�V T is the

SVD of A. Then X∗ = Sλ,τ,μ(A) := UD(x∗)V T is an optimal solution of the problem

min ‖X‖λ,τ + μ

2
‖X − A‖2F , (10)

where

x∗
i =

{
max

(
�i i − λ

μ
, 0

)
· τμ

τμ−1 , if �i i ≤ τ · λ

�i i , if �i i > τ · λ.
(11)

Proof Let F(X) = ‖X‖λ,τ , φ(t) = μt2

2 and ‖ · ‖ = ‖ ·‖F . Using the Proposition 2.1, we can
obtain that the X∗ = UD(x∗)V T is an optimal solution of (10) with x∗ ∈ R

q be the optimal
solution of the problem

min
n∑

i=1

ρλ,τ (xi ) + μ

2
(xi − �i i )

2 .

Observing the above optimization problem is separable and the corresponding one dimen-
sional optimization is strictly convex under the assumption μ > 1/τ . We can verify that (11)
holds, detail can be found in [28].

2.2 Alternating Direction Method for MCP-RLS Problem

In this subsection, we propose an alternating direction method for solving the MCP-RLS
problem. Firstly, by introducing an auxiliary variable Y , MCP-RLS problem can be equiva-
lently transformed into

min
X,Y

‖X‖λ,τ + 1

2
‖A(Y ) − b‖22,

s.t. X = Y, X ∈ R
m×n, Y ∈ R

m×n . (12)

The corresponding augmented Lagrangian function of problem (12) is

Lμ(X, Y, Z) = ‖X‖λ,τ − 〈Z , X − Y 〉 + 1

2
‖A(Y ) − b‖22 + μ

2
‖X − Y‖2F , (13)

where Z ∈ R
m×n is the Lagrangian multiplier, and μ > 0 is the penalty parameter for the

violation of the linear constraint.
Given (Xk, Y k, Zk), the iteration scheme of the ADM for problem (12) can be described

as follows:

Xk+1 ∈ argmin
X∈Rm×n

Lμ

(
X, Y k, Zk

)
, (14)

Y k+1 ∈ argmin
Y∈Rm×n

Lμ

(
Xk+1, Y, Zk

)
, (15)

Zk+1 = Zk − μ
(
Xk+1 − Y k+1

)
, (16)

where argmin denotes the minimal set to an optimization problem.
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It is easy to see that the X-subproblem (14) can be reformulated as

Xk+1 ∈ argmin
X

‖X‖λ,τ − 〈Zk, X − Y k〉 + μ

2
‖X − Y k‖2F

= argmin
X

‖X‖λ,τ + μ

2
‖X −

(
Y k + 1

μ
Zk

)
‖2F . (17)

Let Ŷ = Y k + 1
μ
Zk , according to the Corollary 2.1, it is easy to show that the closed-form

solutions of (17) can be described as

Xk+1 = Sλ,τ,μ(Ŷ ). (18)

On the other hand, the Y-subproblem (15) can be reformulated as follows

Y k+1 = argmin
Y

〈Zk, Y − Xk+1〉 + 1

2
‖A(Y ) − b‖22 + μ

2
‖Xk+1 − Y‖2F . (19)

The Y-subproblem is a quadratical optimization problem and admits a unique solution
Y k+1 satisfying

(
μI + A∗A)

Y k+1 = μXk+1 − Zk + A∗b, (20)

where I is an identity matrix, and theA∗ is the adjoint ofA. In practice, it may be expensive
to solve the above linear system directly, we can apply the conjugate gradient method [38]
for solving it. For the sake of simplicity, let C = μI +A∗A, and Dk = μXk+1 − Zk +A∗b.
Let Ŷ0 = Y k , R̂0 = CŶ0 − Dk and P̂0 = −R̂0, and then the sequence {Ŷi } can be computed
iteratively as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi = − 〈R̂i ,P̂i 〉
〈P̂i ,C P̂i 〉 ,

Ŷi+1 = Ŷi + αi P̂i ,

R̂i+1 = CŶi+1 − Dk,

βi+1 = 〈R̂i+1,C P̂i 〉
〈P̂i ,C P̂i 〉 ,

P̂i+1 = −R̂i+1 + βi+1 P̂i ,

(21)

and set Y k+1 = Ŷi , where 〈·, ·〉 denotes the standard inner trace product of matrix. It is worth
being mentioned that the linear conjugate gradient method is very efficient to solve the linear
system, and its convergence properties are well studied. For further details, we can refer
to [39].

Based on the analysis above, we give the basic framework of the ADM for solving MCP-
RLS problem with fixed regularization parameter λ as follows:

Remark 2.1 In the Step 3, (1)–(3) are the iterative process of linear conjugate gradient
method, where ī = 5. Because of the simple structure of the coefficient matrix C , it can
get the approximate optimal solution X∗ of the subproblem within 5 steps.

In the Step 1, the terminated condition can be the relative error between the original matrix
M and the optimal solution produced by the ADM, that is

RelErr = ‖X∗ − M‖F
‖M‖F ≤ ε (22)

for some ε > 0. Similarly, we can terminate the algorithm if the relative change of the
sequence {Xk, Y k} is less than ε.
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Algorithm 2.1. (ADM)

Initialization: Input X0, Y 0, and Z0. Given constants μ, τ and λ. Set k = 0.
Step 1. Stop if some terminated condition is satisfied. Otherwise, continue.
Step 2. Compute Xk+1 via (18) with fixed Yk and Zk ;
Step 3. Compute Y k+1 with fixed Xk+1 and Zk .
(1) Let Ŷ0 = Yk and ε > 0, set i = 0.
(2) While R̂i > ε and i < ī ,
compute the Ŷi via (21);
Let i = i + 1;
(3) Set Y k+1 = Ŷi .
Step 4. Update Zk+1 via (16) with fixed Xk+1 and Y k+1;
Step 5. Let k = k + 1. Go to Step 1.

Algorithm 2.1 is designed for solvingMCP-RLS problemwith a fixed regularization para-
meter λ. However, a good regularization parameter that leads to good approximation to the
low rank target may not be known in advance. Here we propose novel data driven regulariza-
tion parameter selection rules during the continuation process. To precise, given a decreasing
sequence of parameter {λs}s , we runADM to solve theλs+1-problem initializedwith the solu-
tion of λs-problem. Meanwhile, the discrepancy ds =: ‖A(X (λs)) − b‖2 and the Bayesian
information criterion (BIC) value Bs =: 1

2‖A(X (λs)) − b‖22 + ln(n ∗ m) ∗ rank(X (λs))

are calculated and stored at each λs . The regularization parameter is selected as the first one
that makes ds > δ when the noise level δ is given (DP), or the one that makes minimum
BIC value when the noise level is not known (BIC). We summarize the above ideas in the
following ADM with continuation (ADMc) algorithm for solving the MCP-RLS problem:

Algorithm 2.2. (ADMc)

Initialization: Input λ0 ≥ ‖A∗b‖∞, X (λ0) = 0, Y (λ0) = A∗b, ρ ∈ (0, 1).
1. for s=1, 2, 3, . . . do
2. Set λs = λ0ρ

s and (X0, Y 0) = (X (λs−1), Y (λs−1)).
3. Find X (λs ) and Y (λs ) by Algorithm 2.1.
4. Compute the discrepancy ds and BIC value Bs .
5. End for
6. Select λ̂ by discrepancy principle (DP) or BIC value.

Remark 2.2 At the line 4 of Algorithm 2.2, the stopping rule for the regularization parameter
λ can be chosen as either discrepancy principle (DP) or Bayesian information criterion (BIC),
see [32] for more details.

2.3 Convergence Analysis

In this subsection, we give the convergence analysis of the ADM for solving the MCP-RLS
problem. Due to the nonconvexity of the problem, it is not easy to prove that the ADM
converges to a global minimizer. Wen et al have proposed some preliminary analysis of the
convergent behavior of ADM in [40,41]. They show that any limit point of the iteration
sequence generated by the ADM is a Karush-Kuhn-Tucker (KKT) point under some suitable
assumptions. Following their work, we can establish the convergent behavior of the proposed
ADM for the MCP-RLS problem.
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A triple (X∗, Y ∗, Z∗) is called KKT point of problem (12) if it satisfies the following
system:

⎧
⎪⎨

⎪⎩

X∗ = Sλ,τ,μ

(
Y ∗ + 1

μ
Z∗

)
,

A∗ (A(Y ∗) − b) + Z∗ = 0,
X∗ = Y ∗.

(23)

Theorem 2.1 Let {(Xk, Y k, Zk)} be a sequence generated by ADM. Assume that limk→∞
‖Zk+1 − Zk‖F = 0, and {Y k} is bounded, then there exists a subsequence of {(Xk, Y k, Zk)}
such that it converges to a KKT point of problem (12).

Proof Since μ > 0, and

lim
k→∞ ‖Zk+1 − Zk‖F = 0, (24)

we can obtain from (16) that

lim
k→∞ ‖Y k+1 − Xk+1‖F = lim

k→∞
1

μ
‖Zk+1 − Zk‖F = 0. (25)

It follows from the boundedness of {Y k} and the condition (25) that {Xk} is bounded.
We can see that {Zk} is also bounded from (20). Since {(Xk, Y k, Zk)} is bounded and the
augmented Lagrangian function Lμ is continuous, we can obtain that Lμ(Xk, Y k, Zk) is
bounded. It is clearly to see that Lμ is strongly convex with respect to the variable Y , so it
holds that for any Y and �Y ,

Lμ (X, Y + �Y, Z) − Lμ(X, Y, Z) ≥ ∇Y Lμ(X, Y, Z)T�Y + c‖�Y‖2F , (26)

where c > 0 is a constant. In addition, Y k+1 minimize (15), so the following condition holds,
which is

∇Y Lμ

(
Xk+1, Y k+1, Zk

)T (
Y k − Y k+1

)
≥ 0. (27)

We note �Y = Y k − Y k+1, then combining (26) with (27), we can obtain that

Lμ

(
Xk+1, Y k+1 + (Y k − Y k+1), Zk

)
− Lμ

(
Xk+1, Y k+1, Zk

)
≥ c‖Y k+1 − Y k‖2F (28)

that is,

Lμ(Xk+1, Y k, Zk) − Lμ

(
Xk+1, Y k+1, Zk

)
≥ c‖Y k+1 − Y k‖2F (29)

Moreover, since Xk+1 minimize (14), we have

Lμ

(
Xk+1, Y k, Zk

)
≤ Lμ

(
Xk, Y k, Zk

)
, (30)

Thus together with (29), we can get that

Lμ

(
Xk, Y k, Zk

)
− Lμ

(
Xk+1, Y k+1, Zk+1

)
+ 1

μ
‖Zk+1 − Zk‖2F ≥ c‖Y k+1 − Y k‖2F

(31)

For simplicity, this inequation can be rewritten as

Lk − Lk+1 + zk ≥ yk ≥ 0, (32)
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where Lk = Lμ(Xk, Y k, Zk), Lk+1 = Lμ(Xk+1, Y k+1, Zk+1), zk = 1
μ
‖Zk+1 − Zk‖2F ,

yk = c‖Y k+1 − Y k‖2F . Since Lk is bounded, there exists a subsequence k j such that

lim
k j→∞ Lk j = limk→∞Lk .

Due the the nonnegativity of yk , zk and zk → 0, we have

0 ≤ limk j→∞yk j ≤ limk j→∞
(
Lk j − Lk j+1 + zk

) = lim
k j→∞

(
Lk j + zk j

)

−limk j→∞Lk j+1 ≤ 0, (33)

which shows the following equation:

limk j→∞yk j = 0 (34)

and be equivalent as

limk j→∞‖Y k j+1 − Y k j ‖F = 0. (35)

Together with (25), we can also get that

limk j→∞‖Xk j+1 − Xk j ‖F = 0. (36)

Then, by the boundedness of {Xk j , Y k j , Zk j }, there exists a convergence subsequence still
be denoted by {k j } such that {Xk j , Y k j , Zk j } converges to (X∗, Y ∗, Z∗). From (25) and

lim
k j→∞ Y k j = Y ∗, lim

k j→∞ Xk j = X∗. (37)

Thus, we can obtain that the following condition holds, that is,

X∗ = Y ∗. (38)

The first order optimality condition associated with the subproblem (15) can be written
as (20), which can be transformed into the following form

A∗ (
A

(
Y k+1

)
− b

)
= Zk+1 − Zk − Zk+1 + μ

(
Xk+1 − Y k+1

)
. (39)

Taking the limit of the both sides of (39) on k j and together with (24) and (37), we can
obtain the following condition holds:

A∗ (A(Y ∗) − b
) + Z∗ = 0. (40)

Similarly, we can get the first order optimality conditions associated with the subproblem
(18) as follow

Xk+1 = Sλ,τ,μ

(
Y k + 1

μ
Zk

)
. (41)

Using the condition (35) and taking the limit of the both sides of (41) on k j , we get the
following condition holds, i.e.,

X∗ = Sλ,τ,μ

(
Y ∗ + 1

μ
Z∗

)
. (42)

Hence, combining (42) with (38) and (40), we verify that (X∗, Y ∗, Z∗) is a KKT point of
(12). ��
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Remark 2.3 To obtain convergence result of using ADM on nonconvex problems, some
similar assumptions as the boundedness of {Y k} and (24) are also used in [41,42]. These
assumptions are often observed in the numerical tests, see Appendix 1 for the numerical
verification. On the other hand, if the {Y k} is unbounded, the produced sequence {Xk} may
be not convergent. It is closely related to the non-existence of the global minimizer, see
Appendix 2 for an example.

3 Numerical Experiments

In this section, we report some numerical results for solving the MCP-RLS problem and the
MC problem (7) on both simulated and real data sets, which show the well performance of
the MCP model and the efficiency of the proposed ADMc (Algorithm 2.2). In our numerical
experiments, m and n represent the matrix dimension, r is the rank of original matrix, and
p denotes the number of measurements. Given r ≤ min(m, n), we generate M = MLMT

R ,
where matrix ML ∈ R

m×r and MR ∈ R
n×r are generated with independent identically

distributed Gaussian entries. The subset � of p elements is selected uniformly at random
entries form {(i, j) : i = 1, . . . ,m, j = 1, . . . , n}. The p elements of the known � can be
generated byMatlab script“randsmple(p,m×n) ”.Andwe choose the partial discrete cosine
transform (DCT) matrix as the linear map A. Since the DCT matrix-vector multiplication is
implemented implicitly by FFT, this enables us to test problem more efficiently. The linear
measurements b are set to be b = A(M)+ω, where ω is the additive Gaussian noise of zero
mean and standard deviation σ , which will be specified in different test data sets.

We use sr = p/(mn) to denote the sampling ratio, and dr = r(m + n − r) to denote
the number of degree of freedom for a real-valued rank r matrix. As mentioned in [9,43],
when the ratio p/dr is greater than 3, the problem can be viewed as an easy problem. On
the contrary, it is called as a hard problem. Another ratio is FR = r(m + n − r)/p, it is also
important for successfully recovering the matrix M . If FR > 1, it is impossible to recover
matrix because there is an infinite number of matrices X with rank r with the given entries
[8]. So the FR varies in (0, 1) in this paper. In addition, we take μ = 0.5, τ = 2.7 and σ as
noise level. The regularization parameter λ is chosen by the DP or BIC rule.

In all tests, let X∗ be the optimal solution produced by the proposed method, we use the
relative error to measure the quality of X∗ to original M , i.e.

RelErr = ‖X∗ − M‖F
‖M‖F . (43)

We say that M is recovered successfully by X∗ if the corresponding RelErr is less than
10−3, which has been used in [8,13]. In all the tests, we take the RelErr = 10−4 as the
terminal condition.

Given the computing of a SVD is needed at each iteration for our proposed method,
here we use PROPACK [44] package to evaluate partial SVD. Since PROPACK can not
automatically compute only those singular values greater than τλ, we need to choose the
predetermined number svk of singular values to be computed at the k-th iteration. As in [15],
initializing sv0 = min(m, n)/20, if svpk < svk , we set svk+1 = svpk + 1; if svpk = svk ,
we have svk+1 = svpk + 5, where svpk represents the number of positive singular values of
Ŷ . All experiments except Table 7 are performed under Window 7 premium and MATLAB
v7.8(2009a) running on a Lenovo laptopwith an Intel core CPU at 2.4GHz and 2GBmemory.
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Table 2 Numerical results of ADM, ADMc, APGL and PD for easy matrix completion problems, m =
n, sr = 0.5

(m, r) p/dr ADM ADMc APGL PD

λ Time RelErr Time RelErr Time RelErr Time RelErr

(200,10) 5.128 35 1.07 8.79e−6 1.99 7.00e−7 0.42 2.94e−5 5.48 9.51e−6

(300,10) 7.627 45 1.53 8.92e−6 3.44 2.98e−7 0.77 9.53e−5 10.37 7.94e−6

(400,10) 10.127 55 3.12 7.58e−6 6.44 1.77e−7 1.29 1.76e−5 26.32 8.83e−6

(500,10) 12.626 65 4.65 7.67e−6 10.75 9.06e−8 2.18 8.11e−6 43.15 8.31e−6

(600,10) 15.126 75 5.86 8.25e−6 17.09 8.94e−8 3.24 4.14e−6 106.60 7.59e−6

(700,10) 17.626 85 8.88 5.65e−6 20.18 6.44e−8 4.15 2.53e−6 204.26 7.30e−6

(800,10) 20.126 95 12.21 7.03e−6 31.17 6.16e−8 5.47 1.24e−6 294.80 6.32e−6

(900,10) 22.626 105 14.13 5.87e−6 42.96 4.62e−8 7.83 2.38e−7 293.32 8.90e−6

(1000,10) 25.126 115 18.65 9.45e−6 69.39 3.89e−8 16.12 2.12e−7 548.78 8.99e−6

3.1 Test on Matrix Completion Problems

In this subsection, we apply the proposed ADMc for solving the matrix completion problem
(7). In order to illustrate the performance of ADM for nonconvex MCP matrix completion
problem, we compare the proposed ADM (Algorithm 2.1) and ADMc (Algorithm 2.2) with
the state-of-the-art method APGL1 [15] and PD2 [37]. The PD method solves the rank
minimization problem (1) without noise, and the APGL solves the following nuclear norm
matrix completion problem

min
X∈Rm×n

μ‖X‖∗ + 1

2

∑

(i, j)∈�

|Xi, j − Mi, j |2 ∀(i, j) ∈ �. (44)

In running the codes of APGL and PD, default values are used for all parameters. Firstly,
we test them for the easy matrix completion problems and report the numerical results in
Table 2. From the Table 2, we can see that the ADM with some fixed λ needs less time
than the ADMc and PD method, especially in the high dimensional cases, and it also can
attain a high accuracy as the others. On the another hand, the ADM is comparable with the
state-of-the-art APGL on the running time and accuracy. Thus it shows that the nonconvex
MCP matrix completion problem (7) can be solved by ADM efficiently. From the Table 2,
it is also clear to see that the ADMc can get higher accuracy than the others with a little
more time. Moreover, it dose better than the PD at the time and accuracy. From the above
analysis, we can see that our proposed ADM and ADMc are comparable to the APGL and
PD for solving the easy matrix completion problems, in which the ADM performs better, but
it needs to try for choosing a suitable λ when the tested problem varies. However, the ADMc
performs with an automatical choice for the regularization parameter λ, which makes the
proposed method is more convenient. Therefore we will use the ADMc to solve the different
situations of the matrix MCP minimization problem in the following tests.

For further illustrate the efficiency of the ADMc, we test it with different r in the following
test. The results are shown in the Table 3, which shows that the problems become harder and

1 The APGL code is downloaded form http://www.math.nus.edu.sg/~mattohkc/NNLS.html.
2 The PD code is downloaded from http://www.sfu.ca/~yza30/homepage/PD_Rank/downloads.html.
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Table 3 Numerical results of ADMc, APGL and PD for matrix completion with different r ,m = n, sr = 0.5

(m, r) p/dr ADMc APGL PD

Time RelErr Time RelErr Time RelErr

(200,5) 10.127 1.30 3.21e−7 0.36 4.09e−6 3.03 6.26e−6

(200,10) 5.128 1.98 7.00e−7 0.40 2.94e−5 5.44 9.51e−6

(200,15) 3.463 2.48 8.77e−7 0.76 8.32e−5 5.68 1.18e−5

(200,20) 2.632 4.46 1.39e−6 0.97 3.86e−4 10.22 1.90e−5

(200,25) 2.133 5.08 8.94e−6 1.34 1.30e−4 12.47 2.59e−5

(200,30) 1.802 5.50 2.54e−5 3.36 2.66e−1 22.58 3.22e−5

(200,35) 1.566 7.69 5.85e−5 3.61 3.31e−1 33.87 4.09e−5

(200,40) 1.389 17.11 8.64e−5 3.91 3.76e−1 84.58 5.71e−5

Table 4 Numerical results of ADMc, APGL and PD for hard matrix completion problems, m = n, sr = 0.5

(m, r) p/dr ADMc APGL PD

Time RelErr Time RelErr Time RelErr

(100,10) 2.632 1.29 2.41e−6 0.32 5.22e−4 1.62 1.73e−5

(100,15) 1.802 1.99 4.12e−5 0.68 4.27e−4 3.47 3.60e−5

(200,20) 2.632 4.03 1.39e−6 0.90 3.86e−4 9.79 1.90e−5

(200,25) 2.133 4.58 8.94e−6 1.35 1.30e−4 12.18 2.59e−5

(300,30) 2.632 9.25 1.47e−6 2.15 6.40e−5 28.92 2.01e−5

(300,35) 2.276 11.65 2.16e−6 2.39 3.99e−4 37.92 2.16e−5

(400,40) 2.632 20.98 1.15e−6 3.90 2.62e−4 80.47 1.85e−5

(400,45) 2.355 23.12 1.54e−6 5.17 6.75e−5 84.37 2.12e−5

(500,50) 2.632 40.72 1.59e−6 7.58 1.98e−4 206.85 2.00e−5

(500,55) 2.405 41.36 1.62e−6 11.21 9.09e−5 211.61 2.11e−5

(600,60) 2.632 60.60 1.45e−6 11.95 3.18e−4 699.98 1.86e−5

(600,65) 2.440 64.87 1.52e−6 15.35 4.66e−5 537.15 2.12e−5

(700,70) 2.632 98.35 1.50e−6 17.13 3.04e−4 775.14 1.92e−5

(700,75) 2.465 103.03 1.35e−6 21.30 4.73e−5 1178.32 1.98e−5

(800,80) 2.632 138.28 1.15e−6 27.29 4.36e−5 1617.95 1.92e−5

(900,90) 2.632 193.51 1.44e−6 39.57 9.70e−5 2295.38 1.94e−5

(1000,100) 2.632 260.54 1.51e−6 53.02 9.94e−6 −− –

harder with r increasing. When r is more than 25, the APGL can not obtain a high accuracy,
but the others can still solve efficiently. Form this, it shows that the nonconvex model is more
efficient than the nuclear norm model for these problems without very low rank. In addition,
the ADMc can get a higher accuracy than PD with less time. So we can conclude that the
proposed nonconvex model and the proposed ADMc is robust and efficient.

Next, we choose some hard matrix completion problems for testing. As shown in the
Table 4, we can see that the ADMc performs better than PD at running time and accuracy,
and gets higher accuracy than APGL but needs more time. ′−′ represents the running time of
PD is more than 3000s, so we force it to stop. In particularly, when the dimension becomes
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Table 5 Numerical results of ADMc, APGL and IADM-CG for matrix completion problems with noise,
m = n, σ = 1e − 3

(m, r) sr p/dr ADMc APGL IADM-CG

Time RelErr Time RelErr Time RelErr

(300,30) 0.3 1.579 19.07 5.20e−4 5.89 4.45e−1 9.83 2.50e−1

0.5 2.632 4.09 1.42e−4 2.35 1.44e−4 9.93 6.95e−4

0.7 3.684 6.82 1.00e−4 6.82 1.00e−4 10.24 3.75e−4

(500,50) 0.3 1.579 64.60 4.45e−4 24.61 3.68e−1 35.79 2.31e−1

0.5 2.632 19.26 9.99e−5 7.85 2.22e−4 37.19 4.05e−4

0.7 3.684 18.59 9.16e−5 6.16 1.10e−4 37.80 2.27e−4

(700,70) 0.3 1.579 157.83 3.59e−4 97.81 2.83e−1 96.61 2.28e−1

0.5 2.632 44.97 9.71e−5 18.41 3.15e−4 96.97 2.90e−4

0.7 3.684 39.85 7.88e−5 15.92 6.65e−5 98.16 1.66e−4

(900,90) 0.3 1.579 306.25 3.18e−4 130.30 1.65e−1 196.32 2.29e−1

0.5 2.632 83.60 9.48e−5 40.53 1.22e−4 200.86 2.29e−4

0.7 3.684 76.40 7.46e−5 29.06 6.22e−5 208.10 1.32e−4

higher, the APGL is faster than the ADMc and PD. The PD solves these problems with full
SVD, so it needs a little more time when the dimension is high. By these limited tests, we
can see that the proposed ADMc is comparable with the APGL and PD for solving hard
completion problems.

In some practical applications, the observationsmay contain some noise. For this situation,
we test it for some easy and hard matrix completion problems with noise level σ = 1e−3 in
the following tests. Because the PD method is designed for solving the noiseless problems,
in the following tests, we change to compare ADMc with IADM-CG [38] and APGL for the
problemswith noise. In running the code of IADM-CG, we set the parametersmaxit = 1000
and tol_relchg = 1e − 4, and default values are used for other parameters. The numerical
results is presented in Table 5, where sr is chosen as 0.3, 0.5 and 0.7. Form the Table 5,
we can see that the cases of sr = 0.3 and 0.5 are hard problem. For the case of sr = 0.3,
only the ADMc can obtain the optimal solution. This shows that the nonconvex MCP-RLS
model may need less measurements to successfully recover a low rank matrix than nuclear
normminimization.When the problem becomes easier, all algorithms can solve successfully,
and the ADMc is comparable with the APGL and better than IADM-CG. From the above
analysis, we can see that the proposed nonconvex MCP problem can be more robust than
the nuclear norm model, and the ADMc performs well for the nonconvex matrix low rank
recovery problems with noise (Fig. 2).

Finally, we test the ADMc for recovering two real corrupted gray images. Firstly, we use
the SVD to obtain the low rank-50 images. Then we randomly select 40% samples from the
low rank image, which are the corrupted image with noise level σ = 1e − 3. Finally, these
corrupted images are recovered by the proposed ADMc and APGL. From the Fig. 3, it is
not hard to see that the quality of the image (c) restored by ADMc is better than the image
(d) restored by APGL. In fact, the relative error and the CPU time of the ADMc is less than
that of the APGL for recovering the two images. In particularly, the APGL can not recover
successfully the second image with a correct rank but the ADMc can get a image with high
quality.
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Fig. 2 a Corresponding low rank images with m = n = 512, r = 50; b Randomly masked images from
rank 50 with sr = 40%, σ = 1e− 3; c Recovered images by ADMc method [ErrRel= 5.08e−3 (first image),
2.89e−3 (second image) ]; d Recovered images by APGL method [ErrRel= 4.18e−2 (first image), 2.30e−1
(second image)]
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3.2 Test on General Matrix MCP-RLS Problems

In this subsection, we will test the ADMc for the MCP-RLS problem. We choose the partial
DCT matrix as an encoder A, and compare the ADMc with the APGL for solving noisy
problems. In the first test, we set the noise level σ to be 1e − 3 and let r be from 10 to 100.
The numerical results can be seen in Table 6, and it shows that the ADMc uses more time than
the APGL when the problem is easy. However, when the problems become hard, i.e. r > 80,
theAPGL becomes inefficient, where “r X”represents the rank ofmatrix recovered byAPGL,
and “

√
” shows the rank of matrix recovered successfully. For example, when the r = 90, the

running time of APGL suddenly increases but the optimal solution can not be obtained. In
particularly, when r > 80, theAPGL can not attain the desired low rankmatrix but theADMc
can still recover them successfully. From these numerical results, we can conclude that the

Table 6 Numerical results of
ADMc and APGL for MCP-RLS
problem,
m = n, sr = 0.5, σ = 1e − 3

(m, r) p/dr ADMc APGL

Time RelErr Time RelErr rX

(500,10) 12.63 20.72 9.64e−5 11.89 9.29e−5
√

(500,20) 6.378 26.56 9.74e−5 14.75 9.43e−5
√

(500,30) 4.296 32.04 9.79e−5 17.56 9.64e−5
√

(500,40) 3.255 34.83 1.01e−4 19.23 1.82e−4
√

(500,50) 2.632 48.92 9.98e−5 21.85 2.67e−4
√

(500,60) 2.216 51.72 1.12e−4 26.96 1.09e−4
√

(500,70) 1.920 69.79 1.15e−4 29.22 1.67e−4
√

(500,80) 1.698 87.80 1.88e−4 36.96 6.58e−4
√

(500,90) 1.526 124.51 2.14e−4 198.97 1.03e−1 150

(500,100) 1.389 199.61 3.26e−4 203.28 1.24e−1 150

(500,100) 1.277 291.79 8.18e−4 196.59 1.54e−1 126
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Table 7 Numerical results of ADMc, APGL for matrix completion problems, m = n

(m, p/dr) p r ADMc APGL

Time RelErr Time RelErr

(200,4) 15665 10 2.39 6.09e−003 0.87 5.47e−002

(400,4) 31548 10 3.55 6.41e−003 1.50 5.74e−002

(800,4) 63397 10 14.11 9.46e−003 3.15 5.85e−002

(1600,4) 127429 10 62.69 2.53e−002 2.75 5.83e−002

(3200,4) 255709 10 249.45 4.74e−002 4.62 5.88e−002

proposed nonconvex MCP-RLS problem can solve more efficiently the rank minimization
problems without very low rank than the convex nuclear norm minimization, in other word,
the proposed model is more robust.

Now we should mention the limitation of the proposed method. If the desired matrix is
large butwith very low rank, the proposedADMcalgorithm is not as efficient asAPGL.To test
a large scale problem with very low rank, we fix the rank be 10 and p/dr = 4 and let the size
increase from 200 to 3200. This computation is under Windows 7 premium and MATLAB
(2009a) running on a Sony laptop with Intel Core i7 CPU at 2.4GHz and 8 GB memory. We
can see from Table 7 that the CPU time for APGL is linearly increasing but for the proposed
ADMc is quadratically increasing. This is because the solution to the Y -subproblem in (19)
is not necessarily low rank, and hence there is no fast matrix-vector multiplication in partial
SVD (e.g. PROPACK) for X -subproblem (18). From all above numerical experiment, we
may conclude that when the rank compare with problem size is not very small, the proposed
ADMc algorithm is competitive with APGL.

Finally, we give a note on an important parameter N in the continuation technique, which
cuts λ into N elements. Then at each outer loop, the N elements of λ is chosen by descendant
order. For all the above tests,we set N = 20.Here,we choose N = 10, 20, 40, 80 respectively
for testing the ADMc. From the Fig. 3, we can see that the solution becomes more accurate
when N increasing from 10 to 80. The RelErr can reach to 10−14 when N = 80, which
needs more CPU time.

4 Conclusions

In this paper, we developed an alternating direction method for solving the MCP-RLS prob-
lem. The proposed MCP-RLS model is extended from the sparse signal case, and is more
robust for recovering the low rank minimization problems than the nuclear norm minimiza-
tion, especially for the problems which have not very low rank. For this nonconvex problem,
we showed that the resulting subproblem of ADM has a closed-form solution. Then we
demonstrated that the solution sequence produced by the ADM for the nonconvex problem
converges to its KKT point. Numerical experiments on random data and real data illustrate
that the proposed ADMcmethod performswell, when it coupled with a continuation strategy.
Moreover, the comparing with the state-of-the-art methods have further illustrated that the
proposed ADMc is very efficient and promising. There are several avenues for further inves-
tigation. For the large scale problem but with very low rank solution, the proposed ADMc
algorithm is not be scalingwell. To propose an algorithmwhich can be scaling better deserves
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further study. And there are a few assumptions in Theorem 2.1, how to remove or validate
them are still not clear.
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Appendices

Appendix 1: A Note on Theorem 2.1

In this part, we give some numerical evidences about the assumptions of Theorem 2.1. We
choice m = n = 100, r = 5, sr = 0.5, maxiter = 500 and λ = 20. Form the Fig. 4, we
find that the ‖Y k‖F is always bounded and the ‖Xk − Y k‖F is less than 10−15 after 500
iterations. It implies that the condition limk→∞ ‖Zk+1 − Zk‖F = 0 holds.

Appendix 2: An Example

We will give an example to show the nonconvex model for the matrix completion problem
may not admit a solution if the nonconvex functional is not coercive. Let m = n = 2,

� = {(1, 1); (1, 2); (2, 1)}, the observationmatrixM be given byM =
(
0 1
1 −

)
.We consider

the following four nonconvex models:

(1) min
∑

(i, j)∈� |Xi, j − Mi, j |2, s.t. rank(X) ≤ 1,

(2) min
∑

(i, j)∈� |Xi, j − Mi, j |2 + rank(X),
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Fig. 4 Test results on the ‖Yk‖F and ‖Xk − Yk‖F
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(3) min
∑

(i, j)∈� |Xi, j − Mi, j |2, s.t. ‖X‖λ,τ ≤ 1,

(4) min
∑

(i, j)∈� |Xi, j − Mi, j |2 + ‖X‖λ,τ ,

where λ = 2 and τ = 2 in the scalar MCP function, then ρ(t) =
{
2t − t2

4 , |t | < 4
4, |t | ≥ 4

and

‖X‖2,2 = ρ(σ1) + ρ(σ2), where σ1 and σ2 are two singular values of X . Clearly ρ(t) > t
for all 0 < t < 4. We will show that problems (1) to (4) have no solutions.

For problem (1), let Xn =
(
1/n 1
1 n

)
, then we obtain that the object function has the

infimum 0. But it is clear that 0 can not be obtained, which implies the nonexistence of
solution to problem (1). The similar argument can be applied to show problem (3) does not
admit a solution. To see this, firstly Xn defined as above provides a minimum sequence, it

remains to show 0 is not reachable. For any Z =
(
0 1
1 c

)
, it has two nonzero singular values

σ1 ≥ 1 ≥ σ2 > 0, which implies that ‖Z‖λ,τ ≥ min(4, σ1) + σ2 > 1. Therefore problem
(3) has no solution.

For problem (2), we first notice that the cost functional has a lower bounded 1 and can not
obtain this value. Then Xn as above implies that 1 is the exact lower bound, and hence the
nonexistence of solution. To see problem (4), we only need to show 1 is its unreachable exact

lower bound. To see this, let the cost function of problem (4) be f (X). For any Z =
(
a b
c d

)
,

we can compute Zt Z =
(
a2 + b2 ac + bd
ac + bd c2 + d2

)
, and hence two eigenvalues λ1, λ2 are positive

and satisfy

λ1 + λ2 = a2 + b2 + c2 + d2, λ1λ2 = (ad − bd)2.

From the definition of scalar MCP function, we have

‖Z‖λ,τ ≥ min(σ1, 4) + min(σ2, 4),

where σ1 and σ2 are two singular values of Z (i.e., σi = √
λi ). If the sum of two singular

value great than or equal to 1, then f (Z) ≥ 1 and the equality never happens (since when
1 ≥ σ1 > 0, the inequality ρ(σ1) > σ1 holds). Otherwise let us assume the sum of two
singular values is less than 1, we have

f (Z) ≥ σ1 + σ2 + a2 + (b − 1)2 + (c − 1)2 ≥ λ1 + λ2 + a2 + (b − 1)2 + (c − 1)2.

By observing b2+(1−b)2 ≥ 1/2, c2+(1−c)2 ≥ 1/2, we obtain f (Z) ≥ 1 and the equality
can not be obtained (otherwise a = 0, b = c = 1/2, σ1 = σ2 = 0, which is a contradiction).

One may also find the following two minimization problems

(5) min rank(X), s.t.
∑

(i, j)∈� |Xi, j − Mi, j |2 ≤ δ,

(6) min ‖X‖λ,τ , s.t.
∑

(i, j)∈� |Xi, j − Mi, j |2 ≤ δ

have solutions, but the solutions are unstable with respect to noise level δ.
In general, if the desirable matrix is not a low rank matrix, its low-rank approximation is

either not exist or not stable. This explains that the assumptions in Theorem 2.1 are necessary
in general, to avoid the possible non-stable computation. It also explains that some existing
matrix completion algorithms work well for easy problem (p/dr ≥ 3) but may be not so
efficient for hard problem. On the other hand, if we are interesting in some local minimizers,
it may exist and stable. From our numerical experiments, it seems that the proposed ADMc
converges to some stable local minimizer and hence it works well for both easy and hard
problems.
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