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1. Introduction

Let Fq be the finite field of q elements and F∗
q its multiplicative group, where q is 

a prime power. A polynomial f ∈ Fq[x] is called a permutation polynomial (PP) if the 
induced mapping f : c �→ f(c) from Fq to itself is bijective. Permutation polynomials over 
finite fields have various applications in cryptography, coding theory and combinatorial 
design theory [16], and the study in this area has a long history. However, an exhaustive 
classification of PPs is still elusive and looks hopeless. Recently, PPs with special forms 
have attracted great attention of many researchers.

Permutations over Fq having the form xrf(x q−1
d ) are a class of important PPs and 

they were first investigated in [21], where d | q− 1 and 1 < r < q−1
d . There is a close con-

nection between the PPs of this type and certain permutations of the subgroup of order 
d of F∗

q . Some classes of permutation polynomials have been found by choosing special 
parameters r, q, d [4,5,17]. A criterion in terms of primitive d-th roots was proposed in 
[21], and Akbary, Wang [1], Zieve [23] also subsequently investigated such kind of PPs 
and proposed their criteria, respectively.

Permutation polynomials that have a simple algebraic appearance or possess ad-
ditional properties are of significant interest. In recent years, permutation trinomi-
als with Niho exponents [18] over Fq2 , i.e. permutation trinomials having the form 
x +a1x

s1(q−1)+1+a2x
s2(q−1)+1, have received a lot of attentions [6,8–10,12–14,22]. Under 

the criteria in [1,21,23] the problem of finding such permutation trinomials can be trans-
formed to determining whether some rational functions are bijective on the unit circle. 
However, due to difficulties in this procedure, known works in the literature mostly as-
sumed the coefficients to be 1 when Niho exponents are fixed, which might only capture a 
small portion of the permutation trinomials for those specific Niho exponents. In fact, the 
complete characterization of permutation polynomials in certain forms, even in carefully 
chosen forms, are generally nontrivial. Until recently some progress was made in this di-
rection. Hou first in [9,10] determines all possible coefficients when (s1, s2) = (1, 2); in [19]
the authors propose a characterization of the coefficients a1, a2 when (s1, s2) = (−1, 2), 
which is later proved to be complete in [3,11] by the curve theory and Hasse-Weil bound. 
To the best of our knowledge, these are the only two instances of which the coefficients 
are completely determined.

Permutation quadrinomials have not been well explored so far. Very recently a class 
of permutation quadrinomials of the form

f(x) = x3
(
x3(q−1) + a1x

2(q−1) + a2x
q−1 + a3

)
(1)

over Fq2 was investigated in [20], where q = 2m for an odd integer m. By the additive 
character criterion [15, Th. 7.7], the permutation problem was transformed into the 
determination of solutions in the unit circle of some cubic equations. As a result, three 
subclasses of permutation quadrinomials were found. However, as the coefficients in the 
cubic equations are rather complex and involve a free variable stemming from the additive 
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character criterion, the characterized coefficients [20] are incomplete and it doesn’t seem 
to be a feasible approach to characterizing all the coefficients.

The purpose of this paper is to revisit the quadrinomials and to characterize the 
coefficients of those permutation quadrinomials more comprehensively. Due to the fact 
that the quadrinomials under discussion are quadratic, we consider the permutation 
behavior of these quadrinomials in a direct manner, namely, we directly investigate the 
solution to the affine equation f(x +a) +f(x) = 0 for all nonzero a in Fq2 . Thanks to an 
observation by Hou [11] and a manipulation of the element a, we manage to thoroughly 
analyze the solutions to the resulting low-degree affine equations. Consequently we obtain 
a more comprehensive characterization of the coefficient triples (a1, a2, a3) such that 
the quadrinomials in (1) are permutations. Interestingly, the new characterization not 
only covers the results established in [20], but also seems to produce all permutation 
quadrinomials of the form in (1) according to our exhaustive searches on small fields. 
Nevertheless, the technique in this paper and the ones in [3,11] seem to be insufficient 
to prove this observation.

The remainder of this paper is organized as follows. In Section 2, we introduce some 
basic concepts and related results. Section 3 gives the new sufficient condition on the 
coefficients of the permutation quadrinomials in (1) and Section 4 concludes the study.

2. Preliminaries

For two positive integers m and n with m | n, we use Trnm(·) to denote the trace 
function from F2n to F2m [15], i.e.

Trnm(x) = x + x2m

+ x22m
+ · · · + x2(n/m−1)m

.

For each element x in the finite field F22m , define x = x2m . The unit circle of F22m is 
defined as the set

U =
{
η ∈ F22m : η2m+1 = ηη = 1

}
. (2)

Lemma 1. ([15]) For a positive integer n, the quadratic equation x2 + ax + b = 0, a, b ∈
F2n , a �= 0, has solutions in F2n if and only if Trn1

(
b
a2

)
= 0.

Furthermore, when n is an even integer and Trn1
(

b
a2

)
= 0, the solutions of x2+ax +b =

0 in U were characterized in [2,7,19].

Lemma 2. ([19]) Let n = 2m be an even positive integer and a, b ∈ F∗
2n satisfying 

Trn1
(

b
a2

)
= 0. Then the quadratic equation x2 + ax + b = 0 has

(1) both solutions in the unit circle if and only if

b = a and Trm1
(

b
2

)
= Trm1

( 1 )
= 1;
a a aa
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(2) exactly one solution in the unit circle if and only if

b �= a
a and (1 + bb)(1 + aa + bb) + a2b + a2b = 0.

The following result provides a necessary and sufficient condition for a special affine 
equation to have no solution in F2n , which will be heavily used in the proof of the main 
result.

Proposition 1. For an integer n = 2m with odd m, suppose that A1, A2, A3 ∈ F2n satisfy 
A1A2 �= 0 and A1 + A2 + A3 = 0. Then the equation

A1x
2 + A2x + A3x + A1 = 0 (3)

has no solution in F2n if and only if Trm1
(

A2A2
A1A1

)
= 1.

Proof. By taking power 2m on both sides of (3), we have

A1x
2 + A2x + A3x + A1 = 0. (4)

Since A2 �= 0, substituting A2x = A1x
2 + A3x + A1 from (3) into (4) gives

B1x
4 + B2x

2 + B3x + B4 = 0, (5)

where
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B1 = A2
1A1,

B2 = A2
3A1 + A1A2A3,

B3 = A2(A2A2 + A3A3),
B4 = (A2

1 + A2
2)A1 + A1A2A3.

Due to the equality A1 +A2 +A3 = 0, it can be easily verified that B2 = B4 = B1 +B3. 
Then (5) can be rewritten as

x4 + B1+B3
B1

x2 + B3
B1

x + B1+B3
B1

= (x2 + x + 1)(x2 + x + 1 + B3
B1

) = 0.

Letting u = B3
B1

, by A3 = A1 + A2 we have

u = A2(A2A2 + A3A3)
A2

1A1
= A2

A1
+ A2

2
A2

1
+ A2A2

A1A1
. (6)

By Lemma 1, Trn1 (1 + u) = 0 means that x2 + x + 1 + u = 0 has two solutions in F2n . 
Hence (5) has four solutions in F2n since x2 + x + 1 = 0 has two solutions in F2n due to 
Trn1 (1) = 0.



Z. Tu et al. / Finite Fields and Their Applications 59 (2019) 57–85 61
In the sequel, we will prove that none of these four solutions satisfies (3) if and only 

if Trm1
(

A2A2
A1A1

)
= 1. Suppose that λ ∈ F2n satisfies λ2 + λ + 1 = 0. Therefore, for odd m, 

we have

λ =
(
λ2m

+ λ2m−1
)

+
(
λ2m−1

+ λ2m−2
)

+ · · · +
(
λ2 + λ

)
+ λ = 1 + λ

Hence

A1λ
2 + A2λ + A3λ + A1 = (A1 + A2 + A3)λ + A2 = A2 �= 0,

i.e., λ is not a solution to (3). Suppose that ξ ∈ F2n satisfies ξ2 + ξ + 1 + u = 0.
Then one has

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ22 = ξ + (1 + u) + (1 + u)2,
ξ23 = ξ + (1 + u) + (1 + u)2 + (1 + u)22

,

· · ·
ξ2m = ξ + (1 + u) + (1 + u)2 + · · · + (1 + u)2m−1

,

= ξ + 1 +
m−1∑
i=0

u2i

,

where the last equality holds due to odd m. Moreover, by (6), we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u = A2
A1

+
(

A2
A1

)2
+ A2A2

A1A1
,

u2 =
(

A2
A1

)2
+
(

A2
A1

)4
+

(
A2A2
A1A1

)2
,

· · ·

u2m−1 =
(

A2
A1

)2m−1

+
(

A2
A1

)2m

+
(

A2A2
A1A1

)2m−1

and then

m−1∑
i=0

u2i

= A2

A1
+ A2

A1
+ Trm1

(
A2A2

A1A1

)
.

It can be verified that

A1ξ
2 + A2ξ + A3ξ + A1

= (A1 + A2 + A3)ξ + A2

(
A1
A2

u +
m−1∑
i=0

u2i + 1
)

= A2

(
A1
A2

(
A2
A1

+
(

A2
A1

)2
+ A2A2

A1A1

)
+ A2

A1
+ A2

A1
+ Trm1

(
A2A2
A1A1

)
+ 1

)
= A2 · Trm1

(
A2A2

)
.

A1A1
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Thus, ξ ∈ F2n is not a solution to (3) if and only if Trm1
(

A2A2
A1A1

)
= 1. The proof is 

finished. �
3. Main results

In this section, we shall discuss the permutation behavior of the quadrinomials in (1). 
As pointed out by Hou [11], the coefficient a1 can be assumed to be in F2m since

f(βx) = (βx)3 + a1(βx)2βx + a2β
2x2βx + a3(βx)3

= β
3 (

x3 + a1(β/β)x2x + a2(β/β)2x2x + a3(β/β)3x3) ,
where β ∈ F∗

22m satisfies β2a1 = 1, and a1(β/β) = β−1−2m ∈ F2m .

Theorem 1. Let n = 2m for odd m and define

Γ =
{

(a1, a2, a3) : θ2
2 = θ1θ3, θ1 �= 0,Trm1

(
θ4

θ1

)
= 1, a1 ∈ F2m , a2, a3 ∈ F2n

}
,

where

θ1 = 1 + a2
1 + a2a2 + a3a3, θ2 = a1 + a2a3, θ3 = a2 + a1a3, θ4 = a2

1 + a2a2. (7)

Then for any (a1, a2, a3) ∈ Γ, the quadrinomial

f(x) = x3 + a1x
2x + a2x

2x + a3x
3

is a permutation of F2n .

Before proceeding the proof of this main result, we first discuss the properties of ai’s 
and θi’s given in Theorem 1.

Lemma 3. For (a1, a2, a3) ∈ Γ, we have
(i) θ2θ2 + θ3θ3 = θ4(θ1 + θ4);
(ii) θ1θ2θ3θ4 �= 0 and θ2

2θ3 = θ
2
2θ3;

(iii) θ2θ3 + θ2θ3 = θ2θ2(θ2+θ2)
θ1

and θ2θ3 + θ2θ3 = θ3
2+θ

3
2

θ1
;

(iv) θ2θ2 = θ1θ4, or θ2θ2 = θ1θ4 + θ2
1. Accordingly, we have θ3θ3 = θ2

4, or θ3θ3 =
θ2
1 + θ2

4.

Proof. (i) It can be verified that

θ2θ2 + θ3θ3 = (a1 + a2a3)(a1 + a2a3) + (a2 + a1a3)(a2 + a1a3)

= (a2
1 + a2a2)(1 + a3a3)

= θ4(θ1 + θ4).
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In fact, the above equality always holds just from the definitions of θi, without the 
assumption (a1, a2, a3) ∈ Γ.

(ii) It follows from the definition of Γ that θ1θ4 �= 0. Suppose θ2 = a1 + a2a3 = 0. 
Then θ3 = 0 due to θ2

2 = θ1θ3 by the definition of Γ. By (i), we have θ1 = θ4. Therefore, 
by a1 = a2a3, we have

θ1 = 1 + a2a2a3a3 + a2a2 + a3a3 = (1 + a2a2)(1 + a3a3)

and

θ4 = a2a2a3a3 + a2a2 = a2a2(1 + a3a3).

Thus, the equality θ1 = θ4 yields 1 +a2a2 = a2a2, which is impossible. This shows θ2 �= 0
and then θ3 �= 0.

The assumption θ2
2 = θ1θ3 gives θ2

2θ3 = θ1θ3θ3. This together with θ1 = θ1 shows 
θ2
2θ3 = θ

2
2θ3.

(iii) Since θ2
2 = θ1θ3 from the definition of Γ and θ1 = θ1 from the expression of θ1, it 

can be verified that ⎧⎨
⎩ θ2θ3 + θ2θ3 = θ2

θ
2
2

θ1
+ θ2

θ2
2

θ1
= θ2θ2(θ2+θ2)

θ1
,

θ2θ3 + θ2θ3 = θ3
2+θ

3
2

θ1
.

(iv) Suppose θ2θ2 = θ2
1 + θ1θ4 + c for some c ∈ F2m . By θ2

2 = θ1θ3, we have θ
2
2 = θ1θ3

and then

(θ2θ2)2 = θ2
1θ3θ3. (8)

Multiplying both sides of the equality in (i) by θ2
1 gives

θ2
1θ2θ2 + θ2

1θ3θ3 + θ2
1θ4(θ1 + θ4) = 0

⇔ θ2
1θ2θ2 + (θ2θ2)2 + θ2

1θ4(θ1 + θ4) = 0

⇔ θ2
1(θ2

1 + θ1θ4 + c) + (θ2
1 + θ1θ4 + c)2 + θ2

1θ4(θ1 + θ4) = 0

⇔ c2 + θ2
1c = 0.

That is to say, c = 0 or c = θ2
1. When θ2θ2 = θ1θ4, by (8), we have θ3θ3 = θ2

4, and 
θ3θ3 = θ2

1 + θ2
4 can be similarly proved for θ2θ2 = θ2

1 + θ1θ4. The proof is finished. �
In the following, we will express a2 and a3 in terms of a1 and θi’s. Observe that

{
a1θ2 + a2θ3 = a1(a1 + a2a3) + a2(a2 + a1a3) = θ4,

a θ + θ = a (a + a a ) + a + a a = a (θ + θ ).
3 3 2 3 2 1 3 1 2 3 1 1 4
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Then we have

a2 = a1θ2 + θ4

θ3
and a3 = a1(θ1 + θ4) + θ2

θ3
. (9)

Let

u = θ2 + θ2. (10)

Then (9) gives

a2 + a2 = a1(θ2θ3 + θ2θ3) + θ4(θ3 + θ3)
θ3θ3

= a1θ2θ2u + θ4u
2

θ1θ3θ3
, (11)

a3 + a3 = a1(θ1 + θ4)(θ3 + θ3) + θ2θ3 + θ2θ3

θ3θ3
= a1(θ1 + θ4)u2 + u3 + θ2θ2u

θ1θ3θ3
, (12)

and

a2
2a3 + a2

2a3 = a2(θ2 + θ2 + a2a3) + a2(θ2 + θ2 + a2a3)

= a1θ2θ2u
2 + θ4u

3 + (θ4 + a2
1)(a1(θ1 + θ4)u2 + u3 + θ2θ2u)
θ1θ3θ3

. (13)

Lemma 4. For (a1, a2, a3) ∈ Γ and a1 = 1, we have

Trm1
(

(1 + a2)(1 + a2)
(a2 + a3)(a2 + a3)

)
= 1.

Proof. By (9) and a1 = 1, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 = a2a2 + a3a3,

θ2 = 1 + a2a3,

θ3 = a2 + a3,

θ4 = 1 + a2a2,

a2 = θ2+θ4
θ3

,

a2 + a2 = θ2θ2u+θ4u
2

θ1θ3θ3
.

Then θ3θ3 = (a2 + a3)(a2 + a3) = θ1 + θ2 + θ2. Since θ3θ3 = (θ2θ2)2
θ2
1

due to θ2
2 = θ1θ3

by the definition of Γ, we have θ2 + θ2 = θ1 + (θ2θ2)2
θ2
1

, i.e. θ2
1u = θ3

1 + (θ2θ2)2. Let 
Ω1 = (1+a2)(1+a2) . Then
(a2+a3)(a2+a3)
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Ω1 = θ4

θ3θ3
+ θ2θ2u + θ4u

2

θ1(θ3θ3)2
= θ2

1θ4

(θ2θ2)2
+ θ2θ2θ

3
1u + θ4θ

3
1u

2

θ4
1(θ3θ3)2

= θ2
1θ4

(θ2θ2)2
+

θ2θ2θ1
(
θ3
1 + (θ2θ2)2

)
+ θ4

θ1

(
θ6
1 + (θ2θ2)4

)
(θ2θ2)4

= θ2
1θ4

(θ2θ2)2
+ θ4

1

(θ2θ2)3
+ θ1

θ2θ2
+ θ5

1θ4

(θ2θ2)4
+ θ4

θ1
.

By Lemma 3 (iv), either θ2θ2 = θ1θ4 or θ2θ2 = θ2
1 + θ1θ4 holds. When θ2θ2 = θ1θ4, we 

have Ω1 = θ4
θ1

. When θ2θ2 = θ2
1 + θ1θ4, observe that θ1 �= θ4 due to θ2 �= 0. Then

Ω1 = θ4

(θ1 + θ4)2
+ θ1

(θ1 + θ4)3
+ 1

θ1 + θ4
+ θ1θ4

(θ1 + θ4)4
+ θ4

θ1

= θ2
1

(θ1 + θ4)4
+ θ1

(θ1 + θ4)2
+ θ4

θ1
.

Thus, the equality Trm1 (Ω1) = Trm1
(

θ4
θ1

)
= 1 always holds in both cases. �

Lemma 5. For (a1, a2, a3) ∈ Γ with a2a2 = a3a3, we have

Trm1
(

(a2
2 + a1a3)(a2

2 + a1a3)
(a3 + a1a2)(a3 + a1a2)

)
= 1.

Proof. Since a2a2 = a3a3, θi’s can be rewritten as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ1 = 1 + a2
1,

θ2 = a1 + a2a3,

θ3 = a2 + a1a3,

θ4 = a2
1 + a2a2.

Denote Ω2 = (a2
2+a1a3)(a2

2+a1a3)
(a3+a1a2)(a3+a1a2) and it can be expressed in terms of θi’s. Recall that 

θ2
2 = θ1θ3 from the definition of Γ and u = θ2 + θ2, then θ2θ3 + θ2θ3 = θ2θ2u

θ1
and 

θ2θ3 + θ2θ3 = u3+θ2θ2u
θ1

by Lemma 3 (iii). Since

θ2θ2 = (a1 + a2a3)(a1 + a2a3)

= a2
1 + a1(θ2 + θ2) + a2a2a3a3

= a2
1 + a1u + θ2

4 + a4
1,

we have

a1u = θ2θ2 + θ2
4 + a2

1θ1 (14)
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due to θ1 = a2
1 + 1. The denominator of Ω2 is

(a3 + a1a2)(a3 + a1a2) = a3a3 + a2
1a2a2 + a1(θ2 + θ2)

= a2a2(1 + a2
1) + a1u = (θ4 + θ1 + 1)θ1 + θ2θ2 + θ2

4 + (1 + θ1)θ1

= θ2θ2 + θ2
4 + θ1θ4 (15)

and the numerator of Ω2 is

(a2
2 + a1a3)(a2

2 + a1a3) = (a2a2)2 + a2
1a3a3 + a1(a2

2a3 + a2
2a3)

= (θ1 + θ4 + 1)θ4 +
a1u

(
θ3
4 + (1 + θ1)(θ2θ2 + θ1θ4)

)
θ1θ3θ3

. (16)

The equality (16) holds due to the numerator of (13) and

a1θ2θ2u
2 + θ4u

3 + a1u
2(θ1 + θ4)θ4 + u3θ4 + θ2θ2θ4u

+ a3
1u

2(θ1 + θ4) + a2
1u

3 + a2
1uθ2θ2

= a1u
2(θ2θ2 + θ1θ4 + θ2

4 + a2
1(θ1 + θ4) + a1u) + uθ2θ2(θ4 + a2

1)

= a1u
2θ4 + uθ2θ2(θ1 + θ4 + 1)

= u
(
(θ2θ2 + θ2

4 + a2
1θ1)θ4 + θ2θ2(θ1 + θ4 + 1)

)
= u(θ3

4 + θ1θ4(1 + θ1) + θ2θ2(1 + θ1))

= u
(
θ3
4 + (1 + θ1)(θ2θ2 + θ1θ4)

)
,

where the equality (14) and the fact a2
1 = 1 + θ1 are used.

By Lemma 3 (iv), either θ2θ2 = θ1θ4 or θ2θ2 = θ2
1 + θ1θ4 holds. When θ2θ2 = θ1θ4, 

together with the fact θ3θ3 = θ2
4 and (14), we have Ω2 = θ4

θ1
by (15) and (16). When 

θ2θ2 = θ1θ4+θ2
1, we have θ3θ3 = θ2

1 +θ2
4 and a1u = θ1θ4+θ2

4 +θ1. Thus, the denominator 
of Ω2 becomes θ2

1 + θ2
4 and the numerator equals

(1 + θ1 + θ4)θ4 + (θ1θ4+θ2
4+θ1)(θ3

4+θ2
1+θ3

1)
θ1(θ1+θ4)2

= θ4 + θ4(θ1 + θ4) + θ4(θ1+θ4)4+θ1(θ1+θ4)3+θ1θ
2
4(θ1+θ4)2+θ3

1
θ1(θ1+θ4)2

= θ4(θ1 + θ4) + θ4(θ1+θ4)2
θ1

+ θ1 + θ2
4 + θ2

1
(θ1+θ4)2 .

Therefore,

Ω2 = θ4

θ1 + θ4
+ θ4

θ1
+ θ1

(θ1 + θ4)2
+ θ2

4
(θ1 + θ4)2

+ θ2
1

(θ1 + θ4)4
.

That is to say, Trm1 (Ω2) = 1 holds in both cases. The proof is finished. �
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Lemma 6. For (a1, a2, a3) ∈ Γ, if there exists an element λ ∈ U such that θ1+θ2λ+θ2λ =
0, then

θ2θ2 = θ1θ4, θ3θ3 = θ2
4 and θ2

2θ3 = θ1θ
2
4.

Proof. By Lemma 3 (iv), either θ2θ2 = θ1θ4 or θ2θ2 = θ2
1 + θ1θ4 holds. The equation 

θ1 + θ2λ + θ2λ = 0 is equivalent to

λ2 + θ1

θ2
λ + θ2

θ2
= 0,

which has solutions in U if and only if

Trm1
(
θ2θ2

θ2
1

)
= 1

by Lemma 2. The case θ2θ2 = θ2
1 + θ1θ4 means that Trm1

(
θ2θ2
θ2
1

)
= Trm1

(
1 + θ4

θ1

)
= 0

due to odd m. Thus, by Lemma 3(iv), we have θ2θ2 = θ1θ4, θ3θ3 = θ2
4, and then 

θ2
2θ3 = θ1θ3θ3 = θ1θ

2
4 due to θ2

2 = θ1θ3 by the definition of Γ. �
Lemma 7. For (a1, a2, a3) ∈ Γ and λ ∈ U , we have

λ3 + a1λ
2 + a2λ + a3 �= 0.

Proof. We will finish the proof by contradiction. Assume there exists some λ ∈ U such 
that λ3 + a1λ

2 + a2λ + a3 = 0, i.e.

λ2(λ + a1) = a2λ + a3. (17)

If λ = a1, we have a1 = 1 by 1 = λλ = a1a1 = a2
1, and then a3 = a2, a contradiction to 

the assumption θ1 �= 0. Thus, λ �= a1. By (17), we have

λ2(λ + a1) · λ2(λ + a1) = (a2λ + a3) · (a2λ + a3) (18)

⇔ 1 + a2
1 + a1λ + a1λ = a2a2 + a3a3 + a2a3λ + a2a3λ

⇔ θ1 + θ2λ + θ2λ = 0. (19)

By Lemma 6, (19) holds only if θ2θ2 = θ1θ4. By plugging λ2 = θ1λ+θ2
θ2

into (17), we get

θ1λ + θ2

θ2
(λ + a1) = a2λ + a3

⇔ θ1

θ2
λ2 +

(
θ2 + a1θ1

θ2
+ a2

)
λ + a1θ2

θ2
+ a3 = 0

⇔
(
θ2
1
2 + θ2 + a1θ1

θ
+ a2

)
λ + θ1θ2

2 + a1θ2

θ
+ a3 = 0.
θ2 2 θ2 2
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The last equality gives

λ = θ1θ2 + a1θ2θ2 + a3θ
2
2

θ2
1 + θ2θ2 + a1θ1θ2 + a2θ

2
2

= θ1θ2 + a1θ1θ4 + a3θ1θ3

θ2
1 + θ1θ4 + a1θ1θ2 + a2θ1θ3

= a1θ4 + a3θ3 + θ2

θ1 + θ4 + a1θ2 + a2θ3
= a1θ4 + a3(a2 + a1a3) + θ2

θ1 + θ4 + a1(a1 + a2a3) + a2(a2 + a1a3)

= a1θ1

θ1
= a1.

As mentioned above, λ = a1 is impossible. The proof is finished. �
With the proceeding preparation, we now give the proof of the main result Theorem 1.

Proof of Theorem 1. It suffices to prove that for any a ∈ F∗
2n , the differential equation 

f(x + a) + f(x) = 0 has no solution in F2n . Let x = ay. It is equivalent to showing that 
f(a(y+1)) +f(ay) = 0 has no solution in F2n . With the expression of f(x), the equation 
becomes

a3(y2 + y + 1) + a1a
2a(y2 + y + 1) + a2a

2a(y2 + y + 1) + a3a
3(y2 + y + 1) = 0.

By letting λ = a
a ∈ U and rearranging the terms, we can rewrite the above equation as

ε1y
2 + ε2y

2 + ε3y + ε4y + ε5 = 0, (20)

where the coefficients

ε1 = λ3 + a1λ
2, ε2 = a2λ + a3,

ε3 = λ3 + a2λ, ε4 = a1λ
2 + a3, ε5 = ε1 + ε2 = ε3 + ε4.

(21)

Hence it suffices to prove that for any λ ∈ U , (20) has no solution in F2n . From Lemma 7
it follows that ε5 = λ3 +a1λ

2 +a2λ +a3 �= 0. Based on Proposition 1, we shall investigate 
the solution to (20) in three cases: ε1 = 0; ε2 = 0; and ε1ε2 �= 0.

Case 1: ε1 = 0. In this case we have λ = a1 = 1 since a1 ∈ Fq and ε2 = ε5 �= 0, and 
(20) becomes

ε2y
2 + ε3y + ε4y + ε5 = 0.

We also have ε3 �= 0, otherwise a2 = 1 and then θ4 = a2
1 +a2a2 = 0. This is impossible 

by Lemma 3 (ii). Since ε2 + ε3 + ε4 = 0 and ε5 = ε2, by Lemma 4 we have

Trm1
(
ε3ε3

)
= Trm1

(
(1 + a2)(1 + a2)

)
= 1.
ε2ε2 (a2 + a3)(a2 + a3)
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By Proposition 1, (20) has no solution in F2n .

Case 2: ε2 = 0. In this case we have λ = a3
a2

and ε1 = ε5 �= 0, and (20) is equivalent to

ε1y
2 + ε4y + ε3y + ε5 = 0.

We claim ε4 �= 0. Otherwise a3 = a1λ
2 and then a3a3 = a1λ

2 · a1λ2 = a2
1. Further, 

ε2 = a3 + a2λ = 0 implies that a3a3 = a2a2. Thus, a2
1 = a2a2 which contradicts with 

θ4 �= 0. By ε2 = 0, i.e., a2λ = a3, we have ε4 = a3 + a1λ
2 = a3 + a1

a2
3

a2
2

= a2
2a3+a1a

2
3

a2
2

and 

ε1 = λ3 + a1λ
2 = a3

3
a3
2

+ a1
a2
3

a2
2

= a3
3+a1a2a

2
3

a3
2

. Again by a3a3 = a2a2, we have

ε4ε4
ε1ε1

= a2a2a3a3(a2
2 + a1a3)(a2

2 + a1a3)
a2
3a

2
3(a3 + a1a2)(a3 + a1a2)

= (a2
2 + a1a3)(a2

2 + a1a3)
(a3 + a1a2)(a3 + a1a2)

.

Lemma 5 implies Trm1
(

ε4ε4
ε1ε1

)
= 1. Then by Proposition 1, (20) has no solution in F2n .

Case 3: ε1ε2 �= 0. By taking power 2m on both sides of (20), we have

ε1y
2 + ε2y

2 + ε3y + ε4y + ε5 = 0. (22)

By multiplying both sides of (20) by ε2 and (22) by ε1, and then adding these two 
equalities, we have

τ1y
2 + τ2y + τ3y + τ4 = 0, (23)

where
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ1 = ε1ε1 + ε2ε2,

τ2 = ε1ε4 + ε2ε3,

τ3 = ε1ε3 + ε2ε4,

τ4 = ε1ε5 + ε2ε5.

It can be verified that

τ1 + τ2 + τ3 = ε1(ε1 + ε4 + ε3) + ε2(ε2 + ε3 + ε4) = ε1ε2 + ε2ε1 = 0 (24)

and

τ1 + τ4 = ε1ε1 + ε2ε2 + ε1ε5 + ε2ε5 = ε1ε1 + ε2ε2 + ε1(ε1 + ε2) + ε2(ε1 + ε2) = 0, (25)

due to ε1 + ε2 + ε3 + ε4 = 0 and ε5 = ε1 + ε2. The proof proceeds in two subcases τ2 = 0
and τ2 �= 0.
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Subcase 1. τ2 = 0. The equalities

{
ε1ε4 = (λ3 + a1λ

2)(a1λ
2 + a3) = a1λ + a2

1 + a3λ
3 + a1a3λ

2,

ε2ε3 = (a2λ + a3)(λ3 + a2λ) = a2a3λ + a2a2 + a3λ
3 + a2λ

2,

give

τ2 = (a1 + a2a3)λ + a2
1 + a2a2 + (a2 + a1a3)λ2

= λ(θ2 + θ3λ + θ4λ).

Similarly, we have

τ1 = (λ3 + a1λ
2)(λ3 + a1λ

2) + (a2λ + a3)(a2λ + a3)

= θ1 + θ2λ + θ2λ.

In the sequel, we will prove that τ2 = 0 if and only if τ1 = 0. When τ2 = 0, i.e. 
θ2 = θ3λ + θ4λ, we have

θ2θ2 = (θ3λ + θ4λ)(θ3λ + θ4λ) = θ3θ3 + θ2
4 + θ3θ4λ

2 + θ3θ4λ
2
.

By Lemma 3 (i), we have θ1θ4 = θ3θ4λ
2 + θ3θ4λ

2, which indicates

θ2
1 + θ1θ3λ

2 + θ1θ3λ2 = (θ1 + θ2λ + θ2λ)2 = 0.

Then τ1 = 0. Conversely, suppose τ1 = 0. From Lemma 6, we have θ2θ2 = θ1θ4. By 
θ1 + θ2λ + θ2λ = 0, we have

θ2(θ1 + θ2λ + θ2λ) = θ1(θ2 + θ4λ + θ3λ),

which means τ2 = 0. This together with (24) and (25) gives τ1 = τ2 = τ3 = τ4 = 0, 
which is equivalent to

ε1
ε2

= ε2
ε1

= ε3
ε4

= ε4
ε3

= ε5
ε5
,

where ε5 �= 0 by Lemma 7, and ε3ε4 �= 0 by 0 = τ2 = ε1ε4 + ε2ε3, 0 = τ3 = ε1ε3 + ε2ε4, 
ε5 = ε3 + ε4.

By multiplying both sides of (22) by ε5, we have

ε1ε5y
2 + ε2ε5y

2 + ε3ε5y + ε4ε5y + ε5ε5 = 0.

Let z = ε1ε5y
2 + ε3ε5y, and the above equation becomes z + z + ε5ε5 = 0. If
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Trn1
(
ε1ε5z

ε23ε
2
5

)
= Trn1

(
ε1z

ε23ε5

)
= 1

holds for any z satisfying z + z + ε5ε5 = 0, by Lemma 1 the equation z = ε1ε5y
2 + ε3ε5y

about the variable y has no solution in F2n and then (22) has no solution in F2n . Note 
that

Trn1
(

ε1z

ε23ε5

)
= Trm1

(
ε1z

ε23ε5
+ ε1z

ε23ε5

)
= Trm1

((
ε1

ε23ε5
+ ε1

ε23ε5

)
z + ε1ε5

ε23

)
.

Thus, to prove Trn1
(

ε1z
ε23ε5

)
= 1, it suffices to prove the following claim:

Claim:

• ε1
ε23ε5

+ ε1
ε23ε5

= 0, which is equivalent to ε1ε5
ε23

∈ F2m ;

• Trm1
(

ε1ε5
ε23

)
= 1.

The proof of the claim involves heavy calculation and is rather lengthy. So it is provided 
in Appendix.

Subcase 2. τ2 �= 0. From the above discussion, we have τ1 �= 0 since τ2 = 0 if and only 
if τ1 = 0. By Proposition 1, to prove that (23) has no solution in F2n , it suffices to verify

Trm1
(
τ2τ2

τ1τ1

)
= 1.

It can be verified that

τ2τ2

τ1τ1
= θ2θ2 + θ3θ3 + θ2

4 + (θ2θ3 + θ2θ4)λ + (θ2θ3 + θ2θ4)λ + θ3θ4λ
2 + θ3θ4λ

2

θ2
1 + θ2

2λ
2 + θ

2
2λ

2

= θ1θ4 + (θ2θ3 + θ2θ4)λ + (θ2θ3 + θ2θ4)λ + θ3θ4λ
2 + θ3θ4λ

2

θ2
1 + θ2

2λ
2 + θ

2
2λ

2
,

where the second equality holds due to Lemma 3 (i).
In the case θ2θ2 = θ1θ4, combining with θ2

2 = θ1θ3, we have θ2
θ2

= θ4
θ3

, i.e. θ2θ3 +θ2θ4 =
0. By Lemma 3 (i),

Trm1
(
τ2τ2

τ1τ1

)
= Trm1

(
θ1θ4 + θ3θ4λ

2 + θ3θ4λ
2

2 2 2

)
= Trm1

(
θ4

θ1

)
= 1.
θ1 + θ1θ3λ + θ1θ3λ
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In the case θ2θ2 = θ1θ4 + θ2
1, we have

τ2τ2
τ1τ1

= (θ1+θ2λ+θ2λ)θ4+θ2θ3λ+θ2θ3λ+θ3θ4λ
2+θ3θ4λ

2

(θ1+θ2λ+θ2λ)2

= θ4
θ1+θ2λ+θ2λ

+ θ1(θ2θ3λ+θ2θ3λ+θ3θ4λ
2+θ3θ4λ

2)
θ1(θ1+θ2λ+θ2λ)2

= θ4
θ1+θ2λ+θ2λ

+ θ2θ
2
2λ+θ2θ

2
2λ+θ2

2θ4λ
2+θ

2
2θ4λ

2

θ1(θ1+θ2λ+θ2λ)2

= θ2θ2(θ1+θ2λ+θ2λ)+θ4(θ1+θ2λ+θ2λ)2+θ1θ2θ2+θ2
1θ4

θ1(θ1+θ2λ+θ2λ)2 + θ4
θ1+θ2λ+θ2λ

= θ4
θ1

+ (θ1θ4+θ2
1)

θ1(θ1+θ2λ+θ2λ) + θ2
1

(θ1+θ2λ+θ2λ)2 + θ4
θ1+θ2λ+θ2λ

= θ4
θ1

+ θ1
θ1+θ2λ+θ2λ

+ θ2
1

(θ1+θ2λ+θ2λ)2 ,

and then

Trm1
(
τ2τ2

τ1τ1

)
= Trm1

(
θ4

θ1

)
= 1.

By Lemma 3 (iv), either θ2θ2 = θ1θ4 or θ2θ2 = θ2
1 +θ1θ4 holds. Thus, Trm1

(
τ2τ2
τ1τ1

)
= 1

holds in both cases. The proof is finished. �
The following is the main result of [20].

Theorem 2. ([20]) Let m be an odd positive integer and n = 2m, a, b, c ∈ F2n . Then

g(x) = x3 + ax2x + bxx2 + cx3

permutes F2n if one of the following three conditions is satisfied:

1. c = 1, a satisfies λa + a + λ �= 0 and b = λ(a + 1) + 1 where λ ∈ F2n satisfying 
λ2 + λ + 1 = 0;

2. c = 1, b = a + 1 and a + a + 1 �= 0;
3. a, b, c ∈ F2m , A = ab + c, B = 1 + a + b + c �= 0 and C = a2 + b2 + ac + b satisfy: if 

C = 0, then Trm1
(

A
B2

)
= 1; if C = B2, then Trm1

(
A
B2

)
= 0.

In the following we will describe the relations between Theorems 1 and 2. Since 
there are no assumptions a ∈ F2m in Theorem 2 (1) and (2), by the analysis be-
fore Theorem 1, if a �= 0, we choose β ∈ F∗

22m that satisfies β2a = 1 and let 
(a1, a2, a3) =

(
aβ/β, b(β/β)2, c(β/β)3

)
. Note that if a ∈ F∗

2m , then β ∈ F∗
2m and 

(a1, a2, a3) = (a, b, c). When a = 0, the coefficient triples (a1, a2, a3) coming from Theo-
rem 2 (1) and (2) are {(0, λ + 1, 1), (0, 1, 1)}. Then we have the following proposition.

Proposition 2. Let (a1, a2, a3) be defined as above, then (a1, a2, a3) ∈ Γ.

Proof. It is obvious to see that {(0, λ +1, 1), (0, 1, 1)} ⊂ Γ. We need to consider (a1, a2, a3)
from a �= 0. For Cases 1 and 2, by c = 1, it can be verified that a3a3 = 1 and
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θ1 = 1 + a2
1 + a2a2 + a3a3 = aa + bb,

θ2 = a1 + a2a3 = (a + b)β/β,

θ3 = a2 + a1a3 = (a + b)(β/β)2,

θ4 = a2
1 + a2a2 = θ1.

Then Trm1 ( θ4θ1 ) = 1 is obvious, and it suffices to verify that θ2
2 = θ1θ3, which is equivalent 

to

(b + a)2 = (b + a)(aa + bb). (26)

(1) b = λ(a + 1) + 1 where λ2 + λ + 1 = 0. The left-hand side of (26) is

1 + λ2(a2 + 1) + a2 = λ(a2 + 1) + a2 + a2,

and the right-hand side equals

(
λ(a + 1) + 1 + a

)
(λa + λa + a + a + 1)

= a(a + 1) + λa(a + 1) + λ
2
a(a + 1)

+ λa(a + 1) + λ(a + 1)(a + a + 1) + (a + 1)(a + a + 1)

= λ(a(a + 1) + a(a + 1) + a(a + 1) + (a + 1)(a + a + 1))

+ a(a + 1) + a(a + 1) + (a + 1)(a + a + 1) + (a + 1)(a + a + 1)

= λ(1 + a2) + a2 + a2.

Thus, the equality (26) holds.
(2) b = a +1. Then (26) holds due to b+a = a +a+1 = b +a and θ1 = aa+bb = a +a+1.
(3) We have

θ1 = 1 + a2
1 + a2a2 + a3a3 = (1 + a + b + c)2,

θ2 = a1 + a2a3 = a + bc,

θ3 = a2 + a1a3 = b + ac,

θ4 = a2
1 + a2a2 = a2 + b2.

From the definitions of A, B, C and Lemma 6 of [20], we have

Trm1
(
θ4

θ1

)
= Trm1

(
a + b

B

)
= 1.

Furthermore, we have



74 Z. Tu et al. / Finite Fields and Their Applications 59 (2019) 57–85
θ2
2 + θ1θ3 = (a + bc)2 + (1 + a + b + c)2(b + ac)

= a2 + b2c2 + b + ac + a2b + a3c + b3 + ab2c + bc2 + ac3

= (ac + b + c2 + 1)(a2 + b2 + ac + b) = (B2 + C)C,

which is zero from the assumption. �
From Proposition 2 we see that the three classes of coefficients in Theorem 2 are 

included in Theorem 1. According to a computer verification, the number pairs of coef-
ficient triples covered by Theorems 1 and 2 are (442, 100) for n = 6 and (31714, 1924)
for n = 10, respectively. This indicates that Theorem 1 indeed covers more coefficients 
than Theorem 2.

The following example shows that there exist coefficients in Theorem 1 that can not 
be deduced from Theorem 2.

Example 1. Let q = 23 and w ∈ F26 with the minimal polynomial m(x) = x6 +x4 +x3 +
x + 1. It can be verified that

f(x) = x24 + x17 + wx10 + w38x3

is a permutation of F26 by Theorem 1. Then the triple (a1, a2, a3) = (1, w, w38) does not 
come from Theorem 2. Otherwise, we must have had a3a3 = 1 or a3 ∈ F2m from the 
discussions in Proposition 2.

It is worth noting that our magma program indicates that Theorem 1 covers all the 
coefficients ai’s such that x3 + a1x

2x + a2xx
2 + a3x

3 is a permutation of F22m for m = 3
and 5. From our investigation of the permutation behavior of these quadrinomials, we 
believe the characterized set in this paper is complete. Nevertheless, our techniques as 
well as the ones in [3,11] seem insufficient to address this problem. We cordially invite 
interested readers to attack it.

4. Conclusion

This paper provides a sufficient condition on the coefficients that make quadrinomials 
having the form as in (1) permutations. The new characterization gives a more concise 
description on the coefficients and improves the results of [20]. Further, the numerical 
experiments on small fields indicate that all the possible coefficients might have been 
covered. We believe that the sufficient condition is also necessary, however, we cannot 
prove the necessary direction yet.
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Appendix A. The proof of the Claim in Theorem 1

Recall that all the following discussions are under the assumption θ2λ+ θ2λ + θ1 = 0
for some λ ∈ U , which indicates that Lemma 6 holds, i.e.

θ2θ2 = θ1θ4, θ3θ3 = θ2
4 , θ2

2θ3 = θ1θ
2
4.

We will use the facts that θ2θ3 +θ2θ3 = θ4u, a2θ3 +a2θ3 = a1u, the expressions of a2, a3
from (9),

a2 + a2 = a1uθ1 + u2

θ1θ4
, a3 + a3 = a1(θ1 + θ4)u2 + u3 + θ1θ4u

θ1θ2
4

by (11) and (12), and

a2
2a3 + a2

2a3 = a1u
2θ1 + u3

θ1θ4
+ a1(θ1 + θ4)u2 + u3 + θ1θ4u

θ1θ4

+ a3
1(θ1 + θ4)u2 + a2

1u
3 + a2

1θ1θ4u

θ1θ2
4

= a1u
2θ4 + θ1θ4u

θ1θ4
+ a3

1(θ1 + θ4)u2 + a2
1u

3 + a2
1θ1θ4u

θ1θ2
4

. (27)

(1) To prove ε1
ε23ε5

+ ε1
ε23ε5

= 0 is equivalent to proving

ε1ε5ε
2
3 = ε1ε5ε

2
3.

Since ε1ε23 = (λ3 + a1λ
2)(λ3 + a2λ)2 = (λ + a1)(λ

4 + a2
2) = λ

3 + a1λ
4 + a2

2λ + a1a
2
2, we 

have

ε1ε5ε
2
3 = (λ3 + a1λ

4 + a2
2λ + a1a

2
2)(λ3 + a1λ

2 + a2λ + a3)

= 1 + (a2
1 + a2)λ

2 + (a1a2 + a3)λ
3 + a2

2(a2
1 + a2)λ2 + a2

2(a1a2 + a3)λ

+ a1a3λ
4 + a1a

2
2a3 + a2

2λ
4.

By taking power 2m on both sides of the above equality and then adding these two 
equalities, we have
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ε1ε5ε
2
3 + ε1ε5ε

2
3 = (a2

2 + a1a3)λ
4 + (a2

2 + a1a3)λ4 + (a2
1 + a2 + a2

2a2 + a2
1a

2
2)λ

2

+(a2
1 + a2 + a2

2a2 + a2
1a

2
2)λ2 + (a1a2 + a3)λ

3 + (a1a2 + a3)λ3

+a2
2(a1a2 + a3)λ + a2

2(a1a2 + a3)λ + a1(a2
2a3 + a2

2a3).

It suffices to prove that

C1λ
4 + C1λ

4 + C2λ
2 + C2λ

2 + C3λ
3 + C3λ

3 + C4λ + C4λ + C5 = 0 (28)

under the assumption θ2λ + θ2λ + θ1 = 0, where

C1 = a2
2 + a1a3,

C2 = a2
1 + a2 + a2

2a2 + a2
1a

2
2,

C3 = a1a2 + a3,

C4 = a2
2(a1a2 + a3),

C5 = a1(a2
2a3 + a2

2a3).

By recursively using λ2 = θ1
θ2
λ + θ2

θ2
, we obtain

⎧⎪⎨
⎪⎩

λ3 = λ
(

θ1
θ2
λ + θ2

θ2

)
= λ

θ2
1+θ2θ2

θ
2
2

+ θ1θ2
θ
2
2

= λ
θ2
1+θ1θ4

θ
2
2

+ θ1θ2
θ
2
2
,

λ4 = θ2
1

θ
2
2

(
θ1
θ2
λ + θ2

θ2

)
+ θ2

2
θ
2
2

= θ3
1

θ
3
2
λ + θ2(θ2

1+θ1θ4)
θ
3
2

,
(29)

which can be used to rewrite (28) as Aλ + Aλ + B = 0, where

A = C1
θ3
1

θ
3
2

+ C2
θ1

θ2
+ C3

θ2
1 + θ1θ4

θ
2
2

+ C4,

B = C1
θ2(θ2

1 + θ1θ4)
θ
3
2

+ C1
θ2(θ2

1 + θ1θ4)
θ3
2

+ C2
θ2

θ2
+ C2

θ2

θ2

+ C3
θ1θ2

θ
2
2

+ C3
θ1θ2

θ2
2

+ a1(a2
2a3 + a2

2a3).

In the sequel, we will show that A = B = 0. From (9), we have

θ4 + a2
1 = a2a2 = (a1θ2 + θ4)(a1θ2 + θ4)

θ3θ3
= a2

1θ1θ4 + a1θ4(θ2 + θ2) + θ2
4

θ2
4

,

which gives

a2
1(θ1 + θ4) + a1u + θ4 + θ2

4 = 0, (30)



Z. Tu et al. / Finite Fields and Their Applications 59 (2019) 57–85 77
where u = θ2 + θ2. Note that

Aθ
3
2 = θ3

1C1 + θ1θ
2
2C2 + θ1(θ1 + θ4)θ2C3 + θ

3
2C4

= θ1(θ2
1C1 + θ

2
2C2 + (θ1 + θ4)θ2C3 + θ2θ3C4).

Thus,

A = 0 ⇔ θ2
1C1 + θ

2
2C2 + (θ1 + θ4)θ2C3 + θ2θ3C4 = 0. (31)

From

C1 = a2
2 + a1a3 =

(
a1θ2 + θ4

θ3

)2

+ a1
a1(θ1 + θ4) + θ2

θ3

= a2
1θ

2
2 + θ2

4 + a2
1(θ1 + θ4)θ3 + a1θ2θ3

θ
2
3

= θ2
4 + a2

1θ4θ3 + a1θ2θ3

θ
2
3

,

C2 = a2
1 + a2(1 + a2a2 + a2

1a2) = a2
1 + a1θ2 + θ4

θ
2
3

(
θ3(1 + θ4 + a2

1) + a2
1(a1θ2 + θ4)

)

= a2
1 + (a1θ2 + θ4)(1 + θ4 + a2

1)
θ3

+ a4
1θ1 + a2

1θ3

θ3
,

and

C3 = a1a2 + a3 = a1
a1θ2 + θ4

θ3
+ a1(θ1 + θ4) + θ2

θ3
= a2

1θ2 + a1θ1 + θ2

θ3
,

C4 = a2
2(a1a2 + a3) =

(
a1θ2 + θ4

θ3

)2
a2
1θ2 + a1θ1 + θ2

θ3

= a4
1θ

2
2θ2 + a2

1θ
2
4θ2 + a3

1θ1θ
2
2 + a1θ1θ

2
4 + a2

1θ
3
2 + θ2θ

2
4

θ3θ
2
3

,

we have

θ
2
3θ

2
1C1 = θ2

1(θ2
4 + a2

1θ4θ3 + a1θ2θ3) = θ2
1θ

2
4 + a2

1θ1θ4θ
2
2 + a1θ

2
1θ4θ2,

where the second equality holds due to θ2θ2 = θ1θ4 and θ1θ3 = θ2
2. Similarly, other three 

terms related to (31) are

θ
2
3θ

2
2C2 = a2

1θ
2
3θ

2
2 + θ

2
2θ3(a1θ2 + θ4)(1 + θ4 + a2

1) + θ
2
2θ3(a4

1θ1 + a2
1θ3)

= a2
1θ

2
4(θ2

2 + θ
2
2) + a4

1θ
2
1θ

2
4 + a1θ1θ

2
4θ2 + a2

1θ
2
1θ

2
4 + a1θ1θ

3
4θ2 + a3

1θ1θ
2
4θ2,

θ
2
3(θ1 + θ4)θ2C3 = (θ1 + θ4)θ2θ3(a2

1θ2 + a1θ1 + θ2)

= a2
1θ1θ4θ

2
2 + a2

1θ
2
4θ

2
2 + a1θ

2
1θ4θ2 + a1θ1θ

2
4θ2 + θ2

1θ
2
4 + θ1θ

3
4
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and

θ
2
3θ2θ3C4 = θ2(a4

1θ
2
2θ2 + a2

1θ
2
4θ2 + a3

1θ1θ
2
2 + a1θ1θ

2
4 + a2

1θ
3
2 + θ2θ

2
4)

= a4
1θ

2
1θ

2
4 + a2

1θ
2
4θ

2
2 + a3

1θ
2
1θ4θ2 + a1θ1θ

2
4θ2 + a2

1θ1θ4θ
2
2 + θ1θ

3
4.

Then adding these four equalities together gives

θ
2
3(θ2

1C1 + θ
2
2C2 + (θ1 + θ4)θ2C3 + θ2θ3C4)

= a2
1θ

2
1θ

2
4 + a1θ1θ

3
4θ2 + a3

1θ1θ
2
4θ2 + a2

1θ1θ4θ
2
2 + a1θ1θ

2
4θ2 + a3

1θ
2
1θ4θ2

= a2
1θ

2
1θ

2
4 + a1θ1θ4θ2(θ2

4 + a2
1θ4 + a1θ2 + θ4 + a2

1θ1)

= a2
1θ

2
1θ

2
4 + a1θ1θ4θ2a1θ2 = 0,

which means A = 0.
From the expression of B, we have

Bθ3
2θ

3
2 = θ3

1(θ1 + θ4)(θ
2
3C1 + θ2

3C1) + θ3
1θ

2
4(θ3C2 + θ3C2)

+θ3
1θ4(θ2θ3C3 + θ2θ3C3) + θ3

1θ
3
4a1(a2

2a3 + a2
2a3).

Then, to prove B = 0 is equivalent to showing that

θ1(θ1 + θ4)(θ
2
3C1 + θ2

3C1) + θ1θ
2
4(θ3C2 + θ3C2)

+ θ1θ4(θ2θ3C3 + θ2θ3C3) + a1θ1θ
3
4(a2

2a3 + a2
2a3) = 0. (32)

Combining the expressions of Ci’s, we have

θ1(θ1 + θ4)(C1θ
2
3 + C1θ

2
3) = (θ1 + θ4)

(
θ1

(
a2
1θ4(θ3 + θ3) + a1(θ2θ3 + θ2θ3)

))
= a2

1u
2θ1θ4 + a2

1u
2θ2

4 + a1uθ
2
1θ4 + a1uθ1θ

2
4,

θ1θ
2
4(θ3C2 + θ3C2) = a1uθ1θ

2
4 + a3

1uθ1θ
2
4 + a1uθ1θ

3
4,

θ1θ4(θ2θ3C3 + θ2θ3C3) = a2
1u

2θ1θ4 + a1uθ
2
1θ4,

and

θ1a1θ
3
4(a2

2a3 + a2
2a3) = a1θ

2
4(a1θ4u

2 + θ1θ4u) + a1θ4(a3
1θ1u

2 + a3
1θ4u

2 + a2
1u

3 + a2
1θ1θ4u)

= a2
1u

2θ3
4 + a1uθ1θ

3
4 + a4

1u
2θ1θ4 + a4

1u
2θ2

4 + a3
1u

3θ4 + a3
1uθ1θ

2
4.

The left-hand side of (32) becomes

a2
1u

2θ2
4 + a2

1u
2θ3

4 + a4
1u

2θ1θ4 + a4
1u

2θ2
4 + a3

1u
3θ4 = a2

1u
2θ4(θ4 + θ2

4 + a2
1θ1 + a2

1θ4 + a1u),

which is zero by (30). This proves B = 0.
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(2) It remains to prove that Trm1
(

ε1ε5
ε23

)
= Trm1

(
ε1ε1ε5ε5
(ε3ε3)2

)
= 1. Let Ω3 = ε1ε1ε5ε5

(ε3ε3)2 . 

Since ε5 = ε1 + ε2 and ε1ε1 + ε2ε2 = 0, we have Ω3 = ε1ε1(ε1ε2+ε1ε2)
(ε3ε3)2 . Note that

⎧⎪⎪⎨
⎪⎪⎩

ε1ε1 = (λ + a1)(λ + a1) = 1 + a2
1 + a1λ + a1λ,

ε1ε2 = λ2(λ + a1)(a2λ + a3) = λ2(a2 + a1a2λ + a3λ + a1a3),

ε3ε3 = (λ2 + a2)(λ
2 + a2) = 1 + a2a2 + a2λ

2 + a2λ
2,

we have

ε1ε2 + ε1ε2 = λ2(θ3 + a1a2λ + a3λ) + λ
2(θ3 + a1a2λ + a3λ)

= a3λ
3 + a3λ

3 + θ3λ
2 + θ3λ

2 + a1a2λ + a1a2λ

and then

Ω3 = (1 + a2
1 + a1λ + a1λ)(a3λ

3 + a3λ
3 + θ3λ

2 + θ3λ
2 + a1a2λ + a1a2λ)

(1 + a2a2 + a2λ
2 + a2λ2)2

.

By using θ2λ+θ2λ +θ1 = 0, i.e. λ2 + θ1
θ2
λ + θ2

θ2
= 0, we can rewrite Ω3 as a linear fraction 

of λ and λ. Note that

a3λ
3 + a3λ

3 = a3(θ2
1 + θ2θ2)
θ
2
2

λ + a3(θ2
1 + θ2θ2)
θ2
2

λ + a3θ1θ2

θ
2
2

+ a3θ1θ2

θ2
2

due to (29) and

θ3λ
2 + θ3λ

2 = θ2λ + θ2λ + θ2
2θ3 + θ

2
2θ3

θ2θ2
= θ1.

Then

a3λ
3 + a3λ

3 + θ3λ
2 + θ3λ

2 + a1a2λ + a1a2λ � Mλ + Mλ + N,

where

M = a3(θ2
1 + θ2θ2)
θ
2
2

+ a1a2 = (θ1 + θ4)(a1(θ1 + θ4) + θ2) + a2
1θ2θ3 + a1θ4θ3

θ3θ3
,

and N = a1u(θ1+θ4)
θ2
4

+ θ1 since

a3θ1θ2

θ
2
2

+ a3θ1θ2

θ2
2

= a3θ2

θ3
+ a3θ2

θ3
= a3θ2θ3 + a3θ2θ3

θ3θ3

= θ2(a1(θ1 + θ4) + θ2) + θ2(a1(θ1 + θ4) + θ2)
2 = a1u(θ1 + θ4)

2 .

θ4 θ4
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The numerator (1 + a2
1 + a1λ + a1λ)(Mλ + Mλ + N) equals

(1 + a2
1)N + a1(M + M) + a1N(λ + λ) + (1 + a2

1)(Mλ + Mλ)

+ a1M

(
θ1

θ2
λ + θ2

θ2

)
+ a1M

(
θ1

θ2
λ + θ2

θ2

)
� I1λ + I1λ + J1,

where I1 = a1N + (1 + a2
1)M + a1Mθ1

θ2
and

J1 = (1 + a2
1)N + a1(M + M) + a1Mθ2

θ2
+ a1Mθ2

θ2

= (1 + a2
1)

(
θ1 + a1u(θ1+θ4)

θ2
4

)
+ a1

θ2
4

(
(θ1 + θ4)u + a2

1(θ2θ3 + θ2θ3) + a1θ4(θ3 + θ3)
)

+ a1
Mθ2

2+Mθ
2
2

θ2θ2

= (1 + a2
1)

(
θ1 + a1u(θ1+θ4)

θ2
4

)
+ a1u(θ1+θ4)

θ2
4

+ a3
1θ1θ4u+a2

1θ4u
2

θ1θ2
4

+ a1
Mθ3+Mθ3

θ4

= (1 + a2
1)θ1 + a3

1u(θ1+θ4)
θ2
4

+ a2
1u

2θ1+a1u(θ1+θ4)θ4
θ3
4

by

Mθ3 + Mθ3 =
(θ1 + θ4)

(
(a1(θ1 + θ4) + θ2)θ3 + (a1(θ1 + θ4) + θ2)θ3

)
θ3θ3

+ a2
1(θ2 + θ2)

= a2
1u + (θ1 + θ4)(a1(θ1 + θ4)u2 + θ1θ4u)

θ1θ2
4

.

From

a2λ
2 + a2λ

2 = a2θ2λ + a2θ2λ

θ4
+ a1u

θ4
,

we have the denominator of Ω3 as

(
1 + a2a2 + a2θ2λ + a2θ2λ

θ4
+ a1u

θ4

)2

= 1 + (θ4 + a2
1)2 + a2

1u
2

θ2
4

+ 1
θ2
4

(
a2
2θ

2
2

(
θ1

θ2
λ + θ2

θ2

)
+ a2

2θ
2
2

(
θ1

θ2
λ + θ2

θ2

))

� I2λ + I2λ + J2,

where

I2 = θ1a
2
2θ

2
2

θ2
4θ2

= a2
2θ

3
2

θ3
4
,

J2 = 1 + θ2
4 + a4

1 + a2
1u

2

θ2
4

+ (a2θ
2
2+a2θ

2
2)

2

θ2θ2θ2
4

= 1 + θ2
4 + a4

1 + a2
1u

2(θ1+θ4)
θ3
4

due to the fact a2θ
2
2 + a2θ

2
2 = θ1(a2θ3 + a2θ3) = a1uθ1. Therefore,
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Ω3 = I1λ + I1λ + J1

I2λ + I2λ + J2
= I1θ2λ + I1θ2λ + J1θ2

I2θ2λ + I2θ2λ + J2θ2

= I1θ2λ + I1(θ2λ + θ1) + J1θ2

I2θ2λ + I2(θ2λ + θ1) + J2θ2

= (I1θ2 + I1θ2)λ + I1θ1 + J1θ2

(I2θ2 + I2θ2)λ + I2θ1 + J2θ2
.

To finish the proof, it suffices to prove that

I1θ1 + J1θ2

I2θ1 + J2θ2
= I1θ2 + I1θ2

I2θ2 + I2θ2
(33)

and

Trm1
(
I1θ2 + I1θ2

I2θ2 + I2θ2

)
= 1. (34)

The equation (33) is equivalent to

(I1θ1 + J1θ2)(I2θ2 + I2θ2) + (I2θ1 + J2θ2)(I1θ2 + I1θ2)

= θ2(I1I2θ1 + I1I2θ1 + I2J1θ2 + I1J2θ2 + I2J1θ2 + I1J2θ2) = 0

⇔ J2(I1θ2 + I1θ2) + J1(I2θ2 + I2θ2) + θ1(I1I2 + I1I2) = 0. (35)

Since

I1θ2θ
2
4 = θ2

4M
(
(1 + a2

1)θ2 + a1θ1
)

+ a1Nθ2θ
2
4

=
(
a2
1θ2θ3 + a1θ3θ4 + a1(θ1 + θ4)2 + θ2(θ1 + θ4)

) (
(1 + a2

1)θ2 + a1θ1
)

+a1θ1θ
2
4θ2 + a2

1u(θ1 + θ4)θ2,

by multiplying both sides of the above equality by θ2
2, we have

I1θ2θ
2
4θ

2
2 =

(
a2
1θ

2
2θ3 + a1θ2θ3θ4 + a1(θ1 + θ4)2θ2 + θ2θ2(θ1 + θ4)

) (
(1 + a2

1)θ2θ2 + a1θ1θ2
)

+ a1θ1θ
2
4θ2θ

2
2 + a2

1u(θ1 + θ4)θ2θ
2
2

= (a2
1θ1θ

2
4 + a1θ2θ3θ4 + a1(θ1 + θ4)2θ2 + θ1θ4(θ1 + θ4))((1 + a2

1)θ1θ4 + a1θ1θ2)

+ a1θ
2
1θ

3
4θ2 + a2

1uθ2θ1θ4(θ1 + θ4).

Then

I1θ2θ
3
4 = (a2

1θ1θ
2
4 + θ1θ4(θ1 + θ4))(1 + a2

1)θ4 + (a2
1θ1θ

2
4 + θ1θ4(θ1 + θ4))a1θ2

+ (a1θ2θ3θ4 + a1θ2(θ1 + θ4)2)(1 + a2
1)θ4

+ (a1θ2θ3θ4 + a1θ2(θ1 + θ4)2)a1θ2 + a1θ1θ
3
4θ2 + a2

1uθ2θ4(θ1 + θ4) (36)
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and

(I1θ2 + I1θ2)θ3
4

=
(
a2
1θ1θ

2
4 + θ1θ4(θ1 + θ4)

)
a1u +

(
a1θ4(θ2θ3 + θ2θ3) + a1u(θ1 + θ4)2

)
(1 + a2

1)θ4

+ a2
1u

2(θ1 + θ4)2 + a1uθ1θ
3
4 + a2

1u
2θ4(θ1 + θ4)

= a3
1uθ1θ

2
4 + a1u(θ2

1θ4 + θ1θ
2
4) + a1uθ

2
1(θ4 + a2

1θ4)

+ a2
1u

2(θ1 + θ4)2 + a1uθ1θ
3
4 + a2

1u
2θ4(θ1 + θ4)

= a3
1uθ1θ

2
4 + a1uθ1θ

2
4 + a3

1uθ
2
1θ4 + a2

1u
2θ2

1 + a1uθ1θ
3
4 + a2

1u
2θ1θ4

= a2
1u

2θ2
1 + a1uθ1θ4(a2

1θ4 + θ4 + a2
1θ1 + θ2

4 + a1u)

= a2
1u

2θ2
1.

That’s to say,

I1θ2 + I1θ2 = a2
1u

2θ2
1

θ3
4

.

It’s easy to see that

I2θ2 + I2θ2 = a2
2θ

4
2 + a2

2θ
4
2

θ3
4

= θ2
1(a2θ3 + a2θ3)2

θ3
4

= a2
1u

2θ2
1

θ3
4

= I1θ2 + I1θ2,

which means that (34) holds.
In the following, we begin to compute I1I2 + I1I2. By multiplying both sides of (36)

by

I2θ2θ
3
4 = a2

2θ
4
2 = θ2

1(a2θ3)2 = θ2
1(a1θ2 + θ4)2,

we have

I1I2θ2θ2θ
6
4/θ

2
1

= (a1θ2 + θ4)2
(
(1 + a2

1)θ4 + a1θ2
) (

a2
1θ1θ

2
4 + a1θ2θ3θ4 + a1θ2(θ1 + θ4)2 + θ1θ4(θ1 + θ4)

)
+ (a1θ2 + θ4)2

(
a1θ1θ

3
4θ2 + a2

1uθ2θ4(θ1 + θ4)
)

=
(
(1 + a2

1)θ3
4 + a1θ2θ

2
4 + a2

1(1 + a2
1)θ

2
2θ4 + a3

1θ1θ4θ2

)
·
(
a2
1θ1θ

2
4 + a1θ2θ3θ4 + a1θ2(θ1 + θ4)2 + θ1θ4(θ1 + θ4)

)
+ (a1θ2 + θ4)2

(
a1θ1θ

3
4θ2 + a2

1uθ2θ4(θ1 + θ4)
)
.

Denote these two products by P1 and P2. It’s easy to see

P2 = a3
1θ1θ

3
4θ2θ

2
2 + a1θ1θ

5
4θ2 + a4

1uθ2θ
2
2θ4(θ1 + θ4) + a2

1uθ2θ
3
4(θ1 + θ4)
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and

P2 + P 2 = a3
1uθ

2
1θ

4
4 + a4

1u
2θ1θ

2
4(θ1 + θ4) + a1uθ1θ

5
4 + a2

1u
2θ3

4(θ1 + θ4)

= a3
1uθ

2
1θ

4
4 + a4

1u
2θ2

1θ
2
4 + a4

1u
2θ1θ

3
4 + a1uθ1θ

5
4 + a2

1u
2θ1θ

3
4 + a2

1u
2θ4

4.

To compute P1 +P 1, we write (·) to denote the conjugation of the front terms for short, 
that’s to say,

(1 + a2
1)θ3

4
(
a2
1θ1θ

2
4 + θ1θ4(θ1 + θ4) + a1θ2θ3θ4 + a1θ2(θ1 + θ4)2

)
+ (·)

= (1 + a2
1)θ3

4
(
a1θ4(θ2θ3 + θ2θ3) + a1u(θ1 + θ4)2

)
= (1 + a2

1)θ3
4
(
a1θ

2
4u + a1u(θ2

1 + θ2
4)
)

= a1uθ
2
1θ

3
4 + a3

1uθ
2
1θ

3
4.

Similarly we have the other three sums of the terms and the corresponding conjugations 
of P1 as

a1θ2θ
2
4
(
a2
1θ1θ

2
4 + θ1θ4(θ1 + θ4) + a1θ2θ3θ4 + a1θ2(θ1 + θ4)2

)
+ (·)

= a3
1uθ1θ

4
4 + a1uθ

2
1θ

3
4 + a1uθ1θ

4
4 + a2

1u
2θ2

1θ
2
4 + a2

1u
2θ4

4,

a2
1(1 + a2

1)θ
2
2θ4

(
a2
1θ1θ

2
4 + θ1θ4(θ1 + θ4) + a1θ2θ3θ4 + a1θ2(θ1 + θ4)2

)
+ (·)

= a6
1u

2θ1θ
3
4 + a2

1u
2θ2

1θ
2
4 + a2

1u
2θ1θ

3
4 + a4

1u
2θ2

1θ
2
4 + a3

1u
3θ3

4 + a5
1u

3θ3
4 + a3

1uθ
3
1θ

2
4 + a5

1uθ
3
1θ

2
4

and

a3
1θ1θ4θ2

(
a2
1θ1θ

2
4 + θ1θ4(θ1 + θ4) + a1θ2θ3θ4 + a1θ2(θ1 + θ4)2

)
+ (·)

= a5
1uθ

2
1θ

3
4 + a3

1uθ
3
1θ

2
4 + a3

1uθ
2
1θ

3
4 + a4

1u
2θ1θ

3
4.

Adding these equations together, we obtain

(I1I2 + I1I2)θ1θ
7
4 = θ2

1(P1 + P 1 + P2 + P 2)

= θ2
1(a3

1uθ
2
1θ

4
4 + a1uθ1θ

5
4 + a3

1uθ1θ
4
4 + a1uθ1θ

4
4 + a6

1u
2θ1θ

3
4 + a3

1u
3θ3

4

+ a5
1u

3θ3
4 + a5

1uθ
3
1θ

2
4 + a5

1uθ
2
1θ

3
4)

and

(I1I2 + I1I2)θ1θ
5
4

= θ2
1(a3

1uθ
2
1θ

2
4 + a1uθ1θ

3
4 + a3

1uθ1θ
2
4 + a1uθ1θ

2
4 + a6

1u
2θ1θ4

+a3
1u

3θ4 + a5
1u

3θ4 + a5
1uθ

3
1 + a5

1uθ
2
1θ4)

= a1uθ
2
1(a2

1θ
2
1(θ2

4 + a2
1θ1 + a2

1θ4) + a5
1uθ1θ4 + a4

1u
2θ4 + a2

1u
2θ4 + a2

1θ1θ
2
4 + θ1θ

3
4 + θ1θ

2
4)
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= a1uθ
2
1(a2

1θ
2
1(a1u + θ4) + a5

1uθ1θ4 + a4
1u

2θ4 + a2
1u

2θ4 + a2
1θ1θ

2
4 + θ1θ

3
4 + θ1θ

2
4)

= a1uθ
2
1(a3

1uθ
2
1 + a5

1uθ1θ4 + a4
1u

2θ4 + a2
1u

2θ4 + θ1θ4(a2
1θ1 + a2

1θ4 + θ4 + θ2
4))

= a1uθ
2
1(a5

1uθ1θ4 + a4
1u

2θ4 + a3
1uθ

2
1 + a2

1u
2θ4 + a1uθ1θ4)

= a2
1u

2θ2
1(a4

1θ1θ4 + a3
1uθ4 + a2

1θ
2
1 + a1uθ4 + θ1θ4).

Since

(
(I1θ2 + I1θ2)J2 + (I2θ2 + I2θ2)J1

)
θ6
4 = a2

1u
2θ2

1θ
3
4(J1 + J2)

= a2
1u

2θ2
1
(
(1 + a2

1)θ1θ
3
4 + a3

1u(θ1 + θ4)θ4 + a2
1u

2θ1 + a1uθ4(θ1 + θ4)

+(1 + a4
1 + θ2

4)θ3
4 + a2

1u
2(θ1 + θ4)

)
= a2

1u
2θ2

1θ4
(
(1 + a2

1)θ1θ
2
4 + a3

1u(θ1 + θ4) + a1u(θ1 + θ4) + (1 + a4
1 + θ2

4)θ2
4 + a2

1u
2) ,

to prove the equation (35), it suffices to prove that

(1 + a2
1)θ1θ

2
4 + a3

1u(θ1 + θ4) + a1u(θ1 + θ4) + (1 + a4
1 + θ2

4)θ2
4 + a2

1u
2

+ a4
1θ1θ4 + a3

1uθ4 + a2
1θ

2
1 + a1uθ4 + θ1θ4 = 0,

which holds since its left-hand side can be expanded and simplified as

θ1θ
2
4 + a2

1θ1θ
2
4 + a3

1uθ1 + a1uθ1 + θ2
4 + a4

1θ
2
4 + θ4

4 + a2
1u

2 + a4
1θ1θ4 + a2

1θ
2
1 + θ1θ4

= θ1(θ2
4 + a1u + a2

1θ1 + θ4) + a2
1θ1(θ2

4 + a1u + a2
1θ4) + θ2

4 + a4
1θ

2
4 + θ4

4 + a2
1u

2

= a2
1θ1θ4 + a2

1θ1(a2
1θ1 + θ4) + θ2

4 + a4
1θ

2
4 + θ4

4 + a2
1u

2

= (a2
1θ1 + a2

1θ4 + θ4 + θ2
4 + a1u)2 = 0.

Thus, (33) holds and the proof of the claim is finished. �
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