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The rank minimization problem with affine constraints is widely applied in the fields of
control, system identification, and machine learning, and attracted much attention and
well studied in the past few years. Unlike most of the existing methods where a nuclear
norm is used to approximate the rank term, in this paper, we apply the penalty decompo-
sition method to solve the rank minimization problem directly. One subproblem can be
solved effectively by using linear conjugate gradient method, and the other one has
closed-form solutions by taking full use of the problem’s favorable structure. Under some
suitable assumptions, the convergence results for the proposed method are given. Finally,
we do numerical experiments on randomly generated and real data, the results show that
the proposed method is effective and promising.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider the affine constrained rank minimization problem
min
X2Rm�n

rankðXÞ; s:t: AðXÞ ¼ b; ð1Þ
where X 2 Rm�n is a decision variable, A : Rm�n ! Rp is a linear map and b 2 Rp is a given measurement vector. This problem
appears in many applications arising in various areas, for instance, the low-order realization of linear control system[1], system
identification in engineering[2] and machine learning[3], etc. A particular case of problem (1) is the matrix completion problem
min
X2Rm�n

rankðXÞ; s:t: Xi;j ¼ Mi;j; 8ði; jÞ 2 X; ð2Þ
where M is an unknown matrix with some available sampled entries, and X is a set of index pairs ði; jÞ. Given a subset of
entries of a matrix, problem (2) is to recover the missing entries to obtain a complete low-rank matrix. The problem (1)
is generally viewed as NP-hard because of the combinational nature of the function ‘‘rankð�Þ’’ [4]. Instead of solving the rank
minimization problem, many researchers have used the nuclear norm as a surrogate. The nuclear norm of X is defined as the
sum of its positive singular values, and it is the best convex approximation of the rank function over the unit ball of matrices
with norm less than one. Assume that the matrix X has r positive singular values of r1 P r2 P � � �P rr > 0, then its nuclear
norm is formulated as kXk� ¼

Pr
i¼1riðXÞ.
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Using the nuclear norm, the problem (1) can be transformed into
min
X2Rm�n

kXk�; s:t: AðXÞ ¼ b: ð3Þ
In some applications, the measurement b may be contained with a small amount of noise. Hence, the constraint should be
relaxed in the noisy case. There are two typical relaxation of models for describing the situation with noise. One is the
inequality constrained nuclear norm minimization
min
X2Rm�n

kXk�; s:t: kAðXÞ � bk2 6 d; ð4Þ
where d P 0 measures the noisy level. The other one is the nuclear norm regularized least square problem
min
X2Rm�n

kXk� þ
c
2
kAðXÞ � bk2

2; ð5Þ
where c P 0 balances both terms for minimization. Clearly, when d is equal to zero, the model (4) reduces to (3). Particularly,
if the parameter c and d are chosen appropriately, both of the solutions coincide. The nuclear norm minimization problem
has attracted considerable attention and has taken good progress. Problem (3) is convex, which can be rewritten as an equiv-
alent semidefinte programming problem and solved subsequently by some SDP solvers. However, these solvers can usually
solve a problem with relatively lower dimension. To overcome this disadvantage, Cai et al. [5] proposed a singular value
thresholding (SVT) algorithm for solving
min
X2Rm�n

skXk� þ
1
2
kXk2

F ; s:t: AðXÞ ¼ b; ð6Þ
where s P 0 is a given parameter and k � kF is the Frobenius norm. When s!1, the solution of (6) converges to the one of
(3). Nevertheless, a large value of s may make the thresholding step to eliminate most of the small singular values and pro-
duce a low rank output [5]. However, when the matrix is not very low rank, the efficiency of SVT may not be remarkable. Ma
et al. [4] proposed a fixed point continuation with approximate SVD (FPCA) method to solve a Lagrangian form of (3)
min
X2Rm�n

lkXk� þ
1
2
kAðXÞ � bk2

2; ð7Þ
where l > 0 is a given parameter. The FPCA is an extension of the well-known fixed point continuation algorithm of Hale
et al. [6] for ‘1-regularized minimization. It can handle large scale problems robustly, but its efficiency for the noiseless affine
constraint case is not clear. Subsequently, Toh and Yun [7] proposed an accelerated proximal gradient (APG) method to
accelerate the rate of convergence. Yang and Yuan [8] presented an alternating direction method (ADM), where a linearized
technique is used to ensure that both subproblems admit closed-form solutions. Another ADM type algorithm due to Xiao
and Jin [9], in which one of the subproblems is solved iteratively by the Barzilai–Borwein gradient method [10]. Other ADM
type of algorithms can refer to the references [23,24].

The low rank matrix has been recovered successfully via the nuclear norm minimization, but the matrix produced from
its least measurements may be with much higher rank than the real one unless some strict condition satisfied [11–13].
Hence, the efficient algorithms to solve the rank minimization problem directly are highly needed. For instance, the greedy
algorithms ADMiRA [14] and SVP [15] were proposed to solve the following rank approximation minimization problem
min
X2Rm�n

kAðXÞ � bk2; s:t: rankðXÞ 6 r:
Based on a smooth approximation of rank function, another algorithm was proposed, analyzed, and tested in [16]. As far as
we know, the algorithms to directly solve the affine rank minimization problem (1) are relatively fewer.

Recently, Lu and Zhang [18] proposed a penalty decomposition (PD) method to solve the general rank minimization prob-
lem and tested it by the matrix completion problem (2). Due to the well performance of their method, in this paper, we
extend it to solve the rank minimization problem with affine constraints, and test its numerical performance by comparing
with other well-known solvers. The main idea of PD method is to solve a quadratic penalty function of the problem (1) by
block coordinate descent (BCD) method. Since the BCD method works well if each subproblem minimization is performed
quite efficiently [18]. In our proposed method, one of the subproblems admits closed-form solution, and the other one is
solved efficiently by linear conjugate gradient method. We establish the convergence result under some mild conditions.
Finally, we do numerical experiments and compare with other algorithms in the literature.

The rest of this paper is organized as follows. In Section 2, we will briefly review some results proposed in the [18], discuss
the construction of our method and the convergence analysis. The numerical results are presented in Section 3. Finally, we
conclude this paper with some remarks in Section 4.

2. Algorithm

In this section, we construct our PD method to solve the affine rank minimization problem (1). We begin with reviewing
some results proposed in [18], which take a class of special rank minimization problems having closed form solutions and
play an important role in solving the resulting subproblems.
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2.1. Preliminaries

In the first place, we list a couple of definitions as follows.

Definition 2.1. A norm k � k is a unitarily invariant norm on Rm�n if kUXVk ¼ kXk for all U 2 Um; V 2 Un, where the Un is the
set of all unitary matrices in Rm�n.
Definition 2.2. A function F : Rm�n ! R is a unitary invariant function if FðUXVÞ ¼ FðXÞ for all U 2 Um; V 2 Un; X 2 Rm�n.
Moreover, a set X # Rm�n is unitary invariant set if
fUXV : U 2 Um;V 2 Un;X 2 Xg ¼ X :
Proposition 2.1 [18]. Let k � k be a unitarily invariant norm on Rm�n, and let F : Rm�n ! R be a unitarily invariant function.
Suppose that X # Rm�n is a unitarily invariant set. Let matrix A 2 Rm�n be given, q ¼ minðm;nÞ, and let / be a non-decreasing func-

tion on ½0;1�. Suppose that URðAÞV> is the singular value decomposition of A. Then X� ¼ UDðx�ÞVT is an optimal solution of the
problem
min FðXÞ þ /ðkX � AkÞ s:t: X 2 X ; ð8Þ
where x� 2 Rq is an optimal solution of the problem
min FðDðxÞÞ þ /ðkDðxÞ � RðAÞkÞ s:t: DðxÞ 2 X : ð9Þ
where DðxÞ denotes a m� n matrix with DijðxÞ ¼ xi if i ¼ j, and DijðxÞ ¼ 0 if not.
This result shows that some matrix optimization problems over a subset of Rm�n can be solved by means of solving their

corresponding lower dimensional vector optimization problems [18]. The special case of Proposition 2.1 is listed as follows.

Corollary 2.1 [18]. Let m P 0; A 2 Rm�n, and q ¼ minðm;nÞ. Suppose that X # Rm�n is a unitarily invariant set, and URðAÞVT is

the singular value decomposition of A. Then X� ¼ UDðx�ÞVT is an optimal solution of the problem
min m rankðXÞ þ 1
2
kX � Ak2

F : X 2 X
� �

; ð10Þ
where x� 2 Rq is an optimal solution of the problem
min mkxk0 þ
1
2
kx� rðAÞk2

2 : DðxÞ 2 X
� �

; ð11Þ
where rðAÞ denotes the vector consisting of all singular values of A arranged in nondecreasing order.
From [19], it is easy to see that the closed-form solution of (11) satisfies
x� ¼ Hð2mÞ0:5 ðrðAÞÞ;
where Hð:Þ is an element wise hard thresholding operator proposed in [20], which is defined by
Hð2mÞ0:5 ðrðAÞÞ ¼
rðAÞ; if rðAÞ > ð2mÞ0:5;
0; otherwise:

(
ð12Þ
2.2. Penalty decomposition method for problem (1)

In this subsection, we mainly focus on solving the affine rank minimization problem (1) via PD method. Introducing an
auxiliary variable Y, problem (1) is equivalently transformed into
min
X;Y

rankðYÞ s:t: AðXÞ ¼ b; X ¼ Y X 2 Rm�n; Y 2 Rm�n: ð13Þ
Given a parameter q > 0, the corresponding quadratic penalty function of (13) is
PqðX;YÞ ¼ rankðYÞ þ q
2
kAðXÞ � bk2

2 þ kX � Yk2
F

� �
; ð14Þ
where q is a penalty parameter. Clearly, as q!1, the solution of problem (14) converges to the one of (13). Now we apply
the PD method to minimize the penalty problem, i.e.,
min
X;Y
fPqðX;YÞ : X;Y 2 Rm�ng: ð15Þ
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For simplicity, we set the outer iteration index as k, and use l to represent the inner iteration index.

Given fðXk
l ;Y

k
l Þg, the main steps are to apply the BCD method for solving the both penalty subproblems, which can be

described as follows:
Xk
lþ1 2 ArgminX2Rm�n PqðX;Yk

l Þ; ð16Þ

Yk
lþ1 2 ArgminY2Rm�n PqðXk

lþ1;YÞ: ð17Þ
Firstly, it is not hard to see that problem (16) can be reformulated as
Xk
lþ1 2 ArgminX2Rm�n PqðX;Yk

l Þ ¼ ArgminX2Rm�n
q
2
ðkAðXÞ � bk2

2 þ kX � Yk
l k

2
F Þ: ð18Þ
Let QðXÞ ¼ qðkAðXÞ � bk2
2 þ kX � Yk

l k
2
F Þ=2, it is clear to see that QðXÞ is a quadratic function. Then let

GðXÞ ¼ qðA�ðAðXÞ � bÞ þ X � Yk
l Þ be the gradient of QðXÞ. Forcing GðXÞ ¼ 0 reduces to the following linear system
ðA�A þ IÞX ¼ A�ðbÞ þ Yk
l ; ð19Þ
where I is an identity matrix. Subsequently, we get
Xk
lþ1 ¼ A

�A þ Ið Þ�1ðA�ðbÞ þ Yk
l Þ;
where A� is the adjoint of A. Although we can directly solve the linear equations to get an exact solution, the computing on
the inverse of ðA�A þ IÞ is more expensive especially when the matrix is large. Hence, it is natural to use a linear conjugate
gradient method instead.

For the sake of simplicity, we denote C ¼ I þA�A, and Dk
l ¼ A

�ðbÞ þ Yk
l . Choosing X̂0 ¼ Xk

l , R̂0 ¼ CX̂0 � Dk
l and P̂0 ¼ �R̂0, the

sequence fX̂ig is computed by the following iterative process while kCX̂i � Dk
l kF – 0,
ai ¼ � hR̂i ;P̂ii
hP̂i ;CP̂ii

;

X̂iþ1 ¼ X̂i þ aiP̂i;

R̂iþ1 ¼ CX̂iþ1 � Dk
l ;

biþ1 ¼
hR̂iþ1 ;CP̂ii
hP̂i ;CP̂ii

;

P̂iþ1 ¼ �R̂iþ1 þ biþ1P̂i

8>>>>>>>>>>><
>>>>>>>>>>>:

ð20Þ
and set Xk
lþ1 ¼ X̂i. In (20), the symbol h�; �i denotes the standard inner trace product of matrices. In practical computation, it is

not necessary to compute the Xk
lþ1 exactly. For sufficiently small � > 0, it is shown that kCX̂i � Dk

l kF 6 � may produce accept-
able solutions. Note that the matrix–vector multiplication is only required at each iteration, thus it is not necessary to store

the matrices C and Dk
l explicitly. The linear conjugate gradient method is very efficient to solve linear system, and its con-

vergence properties are well-studied. We refer to [21] for more details.
Secondly, the subproblem (17) is equivalent to
Yk
lþ1 2 Arg min

Y2Rm�n
rankðYÞ þ q

2
kY � Xk

lþ1k
2
F : ð21Þ
Let Xk
lþ1 ¼ URðXk

lþ1ÞV
T . According to the Corollary 2.1, it is easy to show that the closed-form solutions of (21) can be

described as
Yk
lþ1 ¼ UDðy�ÞVT ; ð22Þ
where
y� ¼ Hð2=qÞ0:5 ðrðX
k
lþ1ÞÞ;
where Hð�Þ is defined in (12).

If ðXk
lþ1;Y

k
lþ1Þ satisfies the following condition
krXQqk
ðXk

lþ1;Y
k
lþ1ÞkF 6 �k; ð23Þ
where the �k is a given positive sequence, then let ðXk;YkÞ ¼ ðXk
lþ1;Y

k
lþ1Þ, and starting the outer loops.

In light of all the analysis above, we state the basic framework of the penalty decomposition method joining with con-
jugate gradient algorithm (abbreviated as PD-CG) as follows:
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Algorithm 1. (PD-CG)

Initialization: Given Y0
0 2 Rm�n, constants q0 > 0; r > 1; � > 0; ! P maxfrankðXfeasÞ; minXPq0

ðX;Y0
0Þg; l > 0, integer

�i > 0, and positive decreasing sequence f�kg. Set k ¼ 0.

Step 1. Set l ¼ 0 and find an approximate solution ðXk;YkÞ via the following steps (1)–(4):

(1) Compute Xk
lþ1 via (16) for fixed Yk

l . Let C ¼ I þA�A and Dk
l ¼ A

�ðbÞ þ Yk
l .

(1a). Let X̂0 ¼ Xk
l ; R̂0 ¼ CX̂0 � Dk

l and P̂0 ¼ �R̂0. Set i ¼ 0;

(1b). While R̂i > � and i < �i do,

Compute X̂i via (20);
Let i ¼ iþ 1;

(1c). Set Xk
lþ1 ¼ X̂i.

(2) Compute Yk
lþ1 via (17) with fixed Xk

lþ1.

(3) Set ðXk;YkÞ :¼ ðXk
lþ1;Y

k
lþ1Þ. If ðXk;YkÞ satisfies (23), then go to Step 2.

(4) Set l lþ 1 and go to step (1).
Step 2. Set qkþ1 :¼ rqk.

Step 3. If minXPqkþ1
ðX;YkÞP !, set Ykþ1

0 :¼ Xfeas. Otherwise, set Ykþ1
0 :¼ Yk.

Step 4. Set k kþ 1 and go to Step 1.
Remark 2.1. In the Step 1, (1a)–(1c) are the iterative process of linear conjugate gradient method, where �i ¼ 5. Due to the
simple structure of the coefficient matrix C, it can get the optimal solution of the subproblem within 5 steps by a series of
experiments.
Remark 2.2. As stated in [18], the terminate condition (23) of the Algorithm 1 is used to establish the global convergence of
PD method. In practical applications, we also choose the following terminate condition
Qqk
ðXk

l ;Y
k
l Þ � Qqk

ðXk
l�1; Y

k
l�1Þ

��� ���
maxðjQqk

ðXk
l ;Y

k
l Þj;1Þ

6 �I; ð24Þ
for some �I > 0. Unlike the [18], we take the terminate condition of the outer iteration in this paper as follows
kXk � YkkF 6 �0 and kAðXkÞ � bk2 6 �0; ð25Þ
where �0 > 0 is a given constant.
Remark 2.3. Due to the nonconvex property of function Pq, the method may only obtain a local stationary point. Therefore
in order to enhance the efficiency, we apply the same techniques proposed in the [18], which is to execute it multiple times
by restarting from a suitable perturbation of the current best approximate solution.
2.3. Convergence analysis

In this subsection, we firstly give the convergence of the inner iterations of Algorithm 1. The following convergence result
shows that the inner method is effectively for solving the problem (15).

Theorem 2.1. Let fðXl;YlÞg be the sequence generated by the above BCD method, and let � > 0 be given, suppose that fðXl;YlÞg
has at least an accumulation point, then there exists a sufficiently large l > 0 such that
krXQqðXl;YlÞkF 6 �; ð26Þ
where QqðXl;YlÞ ¼ q
2 ðkAðXlÞ � bk2

2 þ kXl � Ylk2
F Þ.
Proof. The inner iterations show that
PqðXlþ1;YlÞ 6 PqðX;YlÞ; 8X 2 Rm�n; ð27Þ

PqðXlþ1;Ylþ1Þ 6 PqðXlþ1; YÞ; 8Y 2 Rm�n: ð28Þ
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Subsequently,
PqðXlþ1;Ylþ1Þ 6 PqðXlþ1;YlÞ 6 PqðXl;YlÞ; ð29Þ
which indicates that the sequence PqðXl;YlÞ is non-increasing. By the assumption, ðXl;YlÞ has at least an accumulation point,
denoted by ðX�;Y�Þ, then there exists a subsequence L such that
lim
l2L; l!1

ðXl;YlÞ ¼ ðX�;Y�Þ: ð30Þ
Because of the monotonicity of PqðXl;YlÞ and the boundary of PqðXl;YlÞl2L, it is clearly that PqðXl;YlÞ is bounded below and
hence liml!1PqðXl;YlÞ exists. Combining with the (29), we obtain
lim
l!1

PqðXl;YlÞ ¼ lim
l!1

PqðXlþ1;YlÞ: ð31Þ
Because the frankðYlÞgl2L is bounded, there exists a subsequence l 2 �L; l!1 such that liml2�L;l!1rankðYlÞ exists.
Moreover, together with (31), we have
lim
l2�L;l!1

PqðXlþ1;YlÞ ¼ lim
l2�L;l!1

rankðYlÞ þ
q
2
ðkAðXlþ1Þ � bk2

2 þ kXlþ1 � Ylk2
F Þ

¼ lim
l2�L;l!1

rankðYlÞ þ
q
2
ðkAðXlÞ � bk2

2 þ kXl � Ylk2
F Þ

¼ lim
l2�L;l!1

PqðXl; YlÞ

¼ PqðX�; Y�Þ: ð32Þ

Taking limits on both sides of (27) as l 2 �L; l!1 and using the above results (32), we further obtain
PqðX;Y�ÞP PqðX�; Y�Þ:

Because the rankðY�Þ is a constant, it holds that
QqðX;Y�ÞP QqðX�;Y�Þ; 8X 2 Rm�n:
By the first order optimal condition, we have
krXQqðX�;Y�ÞkF ¼ 0:
Note that rXQqð�; �Þ is continuous and together with (30), it is easy to see that
lim
l2�L;l!1

krXQqðXl;YlÞkF ¼ krXQqðX�;Y�ÞkF ¼ 0; ð33Þ
which shows that desirable result (26). h

Next, we assume that an approximate solution ðXk;YkÞ produced by the BCD method satisfies ðXk;YkÞ 2 X � Y, then the
problem (1) can be viewed as a special case of the general rank minimization problem [18] with
f ðXÞ � 0; m ¼ 1; hðXÞ ¼ AðXÞ � b ¼ 0, where X and Y are compact convex set. Both of the convergence results and its proof
for the PD method can be seen in [18]. Here we just give the convergence result as follows.

Theorem 2.2. Let fðXk;YkÞg be the sequence generated by the above PD method satisfying the condition (26), and let Uk 2 Rm�r

and Vk 2 Rr�n be such that ðUkÞ
T
Uk ¼ I; Yk ¼ UkVk. Let fðuk; Zk

XÞg be defined by the following form:

uk ¼ qkðAðX
kÞ � bÞ; Zk

X ¼ qkðX
k � YkÞ. Assume that �k ! 0. Suppose that the level set X! ¼ fX 2 XjrankðXÞ 6 !g is closed,

then the following statements hold:

(1) The sequence fðXk;YkÞg is bounded.

(2) Suppose that a subsequence fðXk;YkÞgk2�K converges to ðX�;Y�Þ and rankðYkÞ ¼ r for all k 2 �K, where r ¼ rankðY�Þ,
thenfðXk;Yk;Uk;VkÞgk2�K is bounded.

Let K # �K be a subsequence such that fðXk;Yk;Uk;VkÞgk2�K converges to ðX�;Y�;U�;V�Þ. Assume that the Robinson condition holds at

ðX�; Y�;U�;V�Þ and fdY � dUVk � UkdV : dU 2 Rm�r ; dV 2 Rr�n; dY 2 T ðYkÞg ¼ Rm�n holds for sufficiently large k 2 K.

Thenfuk; Zk
Xgk2K is bounded,and each accumulation point fu�; Z�Xg of fuk; Zk

Xgk2K together with ðX�;Y�;U�;V�Þ and some
Z�X 2 Rm�n satisfies the first order optimality condition.
3. Numerical experiments

In this section, we report some numerical results to evaluate the performance of the PD-CG method (Algorithm 1). Firstly,
we apply the PD-CG method to solve the problem (1) with different experimental settings. Then we compare it with some
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competitive algorithms for solving randomly generated matrix completion problems. Finally, we test the proposed algo-
rithm’s practical performance on recovering three gray images from their partial pixels.

All experiments are performed under Window 7 premium and MATLAB v7.8(2009a) running on a Lenovo laptop with an
Intel core CPU at 2.4 GHz and 2 GB memory.

In all tests, we firstly generated matrices ML 2 Rm�r and MR 2 Rn�r with independent identically distributed Gaussian
entries, and then set M ¼ MLMT

R. It is clear that the rank of M is r. We use the partial discrete cosine transform (DCT) matrix
as an encoder. Since the DCT matrix is implicity storied as fast transforms, this enables us to test problem more efficiently. In

addition, we choose Xfea ¼ A�ðbÞ and r ¼
ffiffiffiffiffiffi
10
p

, and set qk ¼ r � qk�1 with the initial penalty parameter q0 ¼ 0:1. We use r and
p to denote the rank of original matrix M and the number of measurement respectively. Additionally, sr ¼ p=ðmnÞ denotes
the sampling ratio, and dr ¼ rðmþ n� rÞ denotes the number of degree of freedom in a real-valued rank r matrix. As men-
tioned in [11,16], when the ratio p=dr is greater than 3, the problem can be viewed as an easy problem. On the contrary, it is
considered to be a hard problem. Another radio is FR ¼ rðmþ n� rÞ=p, it is also important for successfully recovering the
matrix M. If FR > 1, it is impossible to recover matrix with the given entries because there is an infinite number of matrices
X with rank r [4]. Therefore the FR varies in ð0;1Þ generally. In all tests, we use X� to represent the optimal solution produced
by the PD-CG method, and use relative error (RelErr) to measure the quality of X� for original matrix M, i.e.
Table 1
Numeri

ðn; rÞ

(50,
(50,
(50,
(50,
(50,
(50,
(50,
(50,
(50,
(50,

Table 2
Numeri

ðn; rÞ

(100
(100
(100
(100

(200
(200
(200
(200
RelErr ¼ kX
� �MkF

kMkF
: ð34Þ
We say that M is recovered successfully by X� if the corresponding RelErr is less than 10�3, which has been used in [4,5].
3.1. Test on affine rank minimization problems

In this subsection, we mainly test our PD-CG method for solving the problem (1). Firstly, we test it as r is increasing from 1
to 10. We run the code 50 times at each case. The test results are shown in Table 1, in which ‘‘NS’’ represents the number of
matrices which are successfully recovered, and ‘‘ATime’’ shows the averaged CPU time in seconds. Observing the Table 1, it is
clear that the PD-CG method can successfully solve these problems at each case. Moreover, it is worth noting that the PD-CG
method requires more time as r increases.

Secondly, we test the performance of PD-CG method with different sr for problem (1). In this test, we fixed r ¼ 5 and set
n ¼ 100 and n ¼ 200. The test results are given in Table 2. It can be seen from the table that as the higher the sampling ratio
is, the easier to be solved the problem becomes. At the same time, less time is required to attain a higher accuracy.

In the third test, we test the PD-CG method at the case of m – n. We choose m and n from 50 to 500, and set sr ¼ 0:5. The
test results are given in Table 3. From this table, we can see that all experimental examples are solved successfully and very
cal results for problem (1) with different r (m ¼ n; sr ¼ 0:5).

dr p/dr FR NS ATime RelErr

1) 99 12.6263 0.0792 50 0.6994 8.255e�007
2) 196 6.3776 0.1568 50 1.0061 6.895e�007
3) 291 4.2955 0.2328 50 1.4532 6.908e�007
4) 384 3.2552 0.3072 50 1.9956 7.072e�007
5) 475 2.6316 0.3800 50 2.4750 7.233e�007
6) 564 2.2163 0.4512 50 3.3209 7.937e�007
7) 651 1.9201 0.5208 50 4.5643 8.671e�007
8) 736 1.6984 0.5888 49 7.4500 1.034e�006
9) 819 1.5263 0.6552 42 12.2541 1.256e�006
10) 900 1.3889 0.7200 42 16.4418 1.337e�006

cal results for problem (1) with different sr (m ¼ n; r ¼ 5).

sr dr p/dr FR Time RelErr

, 5) 0.3 975 3.0769 0.3250 13.91 4.527e�007
, 5) 0.5 975 5.1282 0.1950 4.27 2.122e�007
, 5) 0.7 975 7.1795 0.1393 2.22 1.263e�007
, 5) 0.9 975 9.2308 0.1083 1.41 7.117e�008

, 5) 0.3 1975 6.0759 0.1646 36.93 1.549e�007
, 5) 0.5 1975 10.1266 0.0988 14.57 8.834e�008
, 5) 0.7 1975 14.1772 0.0705 8.89 4.737e�008
, 5) 0.9 1975 18.2278 0.0549 5.51 3.568e�008



Table 3
Numerical results for problem (1) with m – n; sr ¼ 0:5.

ðm; nÞ r p/dr dr FR Time RelErr

(50, 60) 5 2.8571 525 0.3500 2.22 6.038e�007
(60, 50) 5 2.8571 525 0.3500 2.21 5.465e�007
(100, 150) 10 3.1250 2400 0.3200 8.36 1.573e�007
(150, 100) 10 3.1250 2400 0.3200 9.68 1.857e�007
(200, 300) 15 4.1237 7275 0.2425 36.36 5.169e�008
(300, 200) 15 4.1237 7275 0.2425 33.31 5.355e�008
(400, 500) 20 5.6818 17600 0.1760 195.18 2.028e�008
(500, 400) 20 5.6818 17600 0.1760 171.56 1.881e�008

Fig. 1. m ¼ n ¼ 100; r ¼ 10; sr ¼ 0:4 and sr ¼ 0:5 are hard problems, and the others are easy problems.
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high accuracy of the optimal solutions are obtained. Therefore according to the above analysis, we can conclude that the PD-
CG method is efficient and promising for solving the problem (1).

In order to further reveal the efficiency of the PD-CG method, we use the SNR (signal-to-noise ratio) to measure the accu-
racy of the optimal solution X�. The SNR is defined as SNRrec ¼ 20 � log10ðkMkF=kM � X�kFÞ [16]. In this test, we use the PD-CG
method to solve problem (1) with different r and sr. The statistics data are listed in Figs. 1 and 2 respectively, where the hor-
izontal axis represents the index of qk, and the vertical axis denotes SNRrec . In Fig. 1, we set m ¼ n ¼ 100 and r ¼ 10 with
different sr. It can be seen that all SNRrecs surpass 80 dB, which indicates that the propose algorithm performs well. In
Fig. 2, we set sr ¼ 0:5, and increase r monotonely from 5 to 20 with gap 5. We can clearly observe that the higher accuracy,
i.e. more than 100 dB, can be obtained.

To end this subsection, we apply the PD-CG method to solve some hard affine rank minimization problems and compare it
with IADM_NNLS1 [8], which is proposed to solve the nuclear norm regularized least square problem
1 The
min
X2Rm�n

kXk� þ
1

2l
kAðXÞ þ bk2

2: ð35Þ
In running both codes, we set the parameters maxit ¼ 1000 and tol relchg ¼ 1e� 5. Moreover, default values are used for
other parameters in IADM_NNLS. As indicated in Table 4 that, the PD-CG method performs little better than IADM_NNLS
in these problems. Moreover, we note that IADM_NNLS failed to get a higher accuracy within 1000 iterations and failed
to attain a correct rank in some cases. In this table, the symbol ‘‘- - -’’ means that the method solved the corresponding prob-
lem unsuccessfully, and ‘‘rX’’ is the recovered rank by IADM_NNLS rather than the true rank. In addition, we can see that the
algorithm for nuclear norm minimization is not very efficient when the rank of the matrix is not very low. Nevertheless, the
code is downloaded from http://math.nju.edu.cn/jfyang/IADM_NNLS/index.html.

http://math.nju.edu.cn/jfyang/IADM_NNLS/index.html


Fig. 2. m ¼ n ¼ 100; sr ¼ 0:5; r ¼ 5 is easy problem, and the others are hard problems.

Table 4
Comparison of PD-CG and IADM_NNLS for affine rank minimization, m ¼ n; sr ¼ 0:5.

ðm; rÞ dr FR p/dr PD-CG IADM_NNLS

Time RelErr Time RelErr rX

(50, 5) 475 0.38 2.6316 1.90 5.728e�006 18.88 1.68e�001 6
(100, 10) 1900 0.38 2.6316 5.53 8.619e�006 15.88 3.80e�002
(100, 15) 2775 0.56 1.8018 10.17 8.554e�006 - - - - - -
(200, 20) 7600 0.38 2.6316 25.99 7.184e�006 40.84 5.01e�002
(200, 25) 9375 0.47 2.133 33.05 8.640e�006 121.27 3.13e�001 35
(300, 30) 17100 0.38 2.6316 80.23 6.601e�006 100.04 3.84e�004
(300, 35) 19775 0.44 2.2756 88.34 9.069e�006 162.22 1.59e�001 38
(400, 40) 30400 0.38 2.6316 172.48 7.985e�006 195.58 7.05e�004
(400, 45) 33975 0.42 2.3547 185.19 9.221e�006 209.74 1.04e�001
(500, 50) 47500 0.38 2.6316 307.35 6.547e�006 307.87 2.17e�004
(500, 55) 51975 0.41 2.4050 356.38 7.463e�006 337.24 6.14e�002

Table 5
Numerical results of PD-CG, FPCA, PD and FPC for matrix completion, m ¼ n; sr ¼ 0:5.

ðm; rÞ p/dr PD-CG FPCA PD FPC

Time RelErr Time RelErr Time RelErr Time RelErr rX

(50, 5) 2.632 2.78 5.98e�6 2.19 1.53e�5 0.60 2.43e�5 1.96 1.09e�3 8
(100,10) 2.632 4.27 9.59e�6 6.88 1.04e�5 1.74 1.76e�5 12.32 3.51e�4 11
(100, 15) 1.802 10.06 7.21e�6 8.03 1.90e�5 3.51 3.51e�5 105.4 1.05e�2 51
(200, 20) 2.632 11.95 5.77e�6 34.39 9.12e�6 8.19 1.53e�5 27.22 1.68e�4
(200, 25) 2.133 19.37 9.50e�6 38.19 1.42e�5 12.46 2.22e�5 69.81 2.20e�4
(300, 30) 2.632 31.79 6.66e�6 98.16 6.98e�6 27.20 2.01e�5 57.08 1.08e�4
(300, 35) 2.276 44.85 8.18e�6 117.2 1.03e�5 58.98 2.00e�5 104.0 1.24e�4
(400, 40) 2.632 64.01 7.98e�6 210.5 6.28e�6 82.21 1.89e�5 109.5 7.87e�5
(400, 45) 2.355 85.11 9.61e�6 213.9 9.09e�6 104.1 2.16e�5 170.2 8.74e�5 46
(500, 50) 2.632 122.5 6.11e�6 390.3 6.13e�6 160.9 2.05e�5 211.7 6.40e�5
(500, 55) 2.405 161.1 7.46e�6 442.7 8.22e�6 240.4 2.18e�5 335.4 6.82e�5
(600, 60) 2.632 239.0 8.89e�6 626.6 5.98e�6 610.6 1.40e�5 430.8 5.26e�5
(600, 65) 2.439 200.2 9.73e�6 627.7 7.73e�6 538.7 2.17e�5 546.7 5.53e�5
(700, 70) 2.632 321.8 7.26e�6 997.5 6.19e�6 991.7 1.84e�5 700.3 4.47e�5
(700, 75) 2.465 384.8 8.30e�6 984.9 7.52e�6 1293.9 2.02e�5 905.8 4.71e�5
(800, 80) 2.632 487.2 5.98e�6 1502.9 6.50e�6 1588.8 1.83e�5 1102.1 3.91e�5
(800, 85) 2.485 497.8 6.95e�6 1507.8 7.10e�6 2942.3 1.99e�5 1273.8 4.03e�5
(900, 90) 2.632 632.5 9.80e�6 1948.3 5.10e�6 6134.2 1.94e�5 1468.5 3.45e�5
(900, 95) 2.500 873.8 6.55e�6 2300.4 6.06e�6 3991.4 2.09e�5 1913.5 3.58e�5
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Fig. 3. Images with full rank (first line); Corresponding low rank images with r ¼ 40 (second line); Randomly masked images from rank 40 with sr ¼ 50%

(third line); Recovered images by PD-CG method (last line).
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IADM_NNLS method is truly very efficient for easy large scale low rank problems. Therefore we conclude from these numer-
ical experiments that the PD-CG method is efficient and promising for solving the affine rank minimization problem.

3.2. Test on matrix completion problems

In this subsection, we report the efficiency of the PD-CG method for solving the matrix completion (MC) problem (2). Our
first test is to compare the recovery ability of PD-CG with FPCA2 [4], FPC3 [4] and PD4 [18]. Both of FPCA and FPC solve the
following nuclear norm matrix completion problem
2 The FPCA code is downloaded form http://www1.se.cuhk.edu.hk/sqma/FPCA.html.
3 The FPC code is downloaded from http://svt.stanford.edu/code/.
4 The PD code is downloaded from http://www.sfu.ca/yza30/homepage/PD_Rank/downloads.html.

http://www1.se.cuhk.edu.hk/sqma/FPCA.html
http://svt.stanford.edu/code/
http://www.sfu.ca/yza30/homepage/PD_Rank/downloads.html
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min
X2Rm�n

kXk�; s:t: Xi;j ¼ Mi;j; 8ði; jÞ 2 X: ð36Þ
Here we give the MATLAB codes 0X ¼ randsampleðm � n; pÞ0 and 0p ¼ roundðsr �m � nÞ0 to generate the randan matrix Mi;j. In
this test, we use PD and PD-CG methods to solve the problem (2). Comparing PD-CG with PD, we know that the main dif-
ference between both algorithms lies in solving the resulting subproblem on X per-iteration. More preciously, PD solves it by
project method, and PD-CG uses a linear conjugate gradient method instead. In the first test, we choose some hard problems
solved by the four algorithms with different m and r. Particularly, due to the increasing scale of problems and the expensive
computing of singular value decomposition at each iteration, a welcome software PROPACK [22] is used to compute the sin-
gular values which is bigger than a threshold and corresponding vectors for the PD-CG method. As shown in [7] that, initial-
izing sv0 ¼minðm;nÞ=20, we predict the number of singular values and vectors at each iteration as follows:
svkþ1 ¼
svpk þ 1; if svpk < svk;

svpk þ 5; if svpk ¼ svk;

�

where svpk denotes the number of positive singular values of Xk
lþ1. In particular, we set the parameters

tol ¼ 10�5; mu final ¼ 0:01 and maxiter ¼ 500 for FPC. Additionally, for FPCA and PD, default values are used for all param-
eters. From Table 5, we can see that PD-CG requires less time to attain higher level of accuracy when comparing with FPCA
and FPC. It thus conclude that PD-CG performs better than FPCA and FPC in these tested problems. In the meantime, com-
paring with PD, PD-CG performs better at the case of m > 300. In addition, we can see that the FPC method is not so effective
for solving hard problems because it can not produce the true rank of original matrix such as shown in the last column of
Table 5. Overall, PD-CG method is very comparable with the other three method for solving the MC problems on these lim-
ited experiments.

To further show the superiority of the PD-CG method, we test it for recovering three real gray images. These images are
widely used to test algorithms’ performance in many simulations. In this test, the size of ‘cameraman’ is 256 � 256, and the
sizes of others are 512 � 512. We firstly get the low rank-40 images by using the singular value decomposition (SVD) to each
original images, which are shown in the second line of Fig. 3. Then we randomly select 50% samples from each resulting low
rank images and recover the missed pixels via solving the matrix completion model. In addition, the relative error form left
to right in the Fig. 3 is RelErr ¼ 4:856e� 004; RelErr ¼ 8:763e� 005; RelErr ¼ 3:420e� 005 respectively. From the last two
lines in this figure, we visibly see that all the images are successfully recovered.

4. Conclusions

In this paper, we proposed a PD-CG method for solving the affine rank minimization problem directly. The proposed
method mainly minimized the quadratic penalty function of the problem (1) by alternatively solving the resulting penalty
subproblems on X and Y. The subproblem on X can be effectively solved by using the linear conjugate gradient method, and
the other subproblem has a closed-form solution. Numerical experiments on the affine rank minimization problem with dif-
ferent sizes, ranks, and sampling ratios have illustrated that the proposed PD-CG method has well performance. The accuracy
measure SNRrec has further demonstrated that the proposed method is efficient. Moreover, numerical comparison with
IADM_NNLS shows that solving the affine rank minimization may produce more truthful rank than solving the nuclear norm
minimization. Finally, the comparison with three state-of-the-art methods and the recovery of some corrupted images have
further illustrated that the PD-CG method is promising and practical.
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