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Abstract
As a thread-level automatic parallelization technique, thread-level speculation (TLS) 
can partition irregular serial programs into multiple threads and implement these 
threads in parallel on multi-core architectures to improve the performance of pro-
grams. To tackle the problem that the conventional heuristic rule-based (HR-based) 
thread partition approach partitions programs of different characteristics with the 
same scheme and several programs have bad partition results, this paper proposes 
a program characteristic-based thread partition approach (ProCTA), which uses a 
machine learning method to learn the knowledge of thread partition from TLS sam-
ple set and predicts thread partition schemes for unknown programs in accordance 
with programs’ characteristics and finally applies the schemes to thread partition. In 
Prophet compilation system, Olden benchmarks are used to evaluate ProCTA, and a 
comparison is made between ProCTA and conventional heuristic rules-based parti-
tion approach. The experimental results show that the proposed approach can deliver 
an average 18.24% speedup improvement than HR-based thread partition approach.
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1 Introduction

With development of semiconductor evolving from the single core era to the 
multi-core era, how to accelerate the serial programs and make full use of the rich 
multi-core resources becomes a research focus. Thread-level speculation (TLS) 
[10, 26, 27] can automatically partition one serial program into multiple threads 
in an aggressive way, and allows the existence of fuzzy control dependence and 
data dependence between threads, and allows multiple threads to simultaneously 
execute on a Chip Multiprocessor (CMP), so to exploit thread-level parallelism 
for programs. Various schemes of TLS emerge as the time requires. The products 
of TLS’s development can be classified into three headings, including:

1. systems: Hydra [7], Multiscalar [5], POSH [17], STAMPede [25], Mitosis [18, 
21], Pinot [19], and Prophet [2, 4, 24];

2. algorithms [26, 27];
3. related products [9–11, 14, 15]

Thread partition approach is of vital importance to improve the speedups of pro-
grams. Conventional thread partition methods usually adopted heuristic rules to 
perform thread partition. The paper [8] used a series of balanced minimum cuts 
to partition programs under consideration of various overheads of thread parti-
tion in total, and adjusted the edges’ weights of programs’ control flow graphs 
after every partition. The paper [3] compared different partition algorithms quan-
titatively under the given computing architecture and proposed a new dynamic 
partition algorithm:Mex-slicing, which outperformed other dynamic partition 
algorithms, but could not reach a balance between predictability and cost. In con-
clusion, these heuristic rules-based (HR-based) thread partition methods have the 
“one-size-fits-all” limitations, namely uniform heuristic rules are utilized to parti-
tion all programs, which lead to that it is hard to get the optimal thread partition 
scheme for every program.

To solve the shortcomings of HR-based thread partition method [18, 22], machine 
learning methods are successfully introduced into TLS. The paper [2] proposed a 
method that the portable compiler used the machine learning method to match the 
parallelism of a program to a multi-core processor. This paper developed two predic-
tors, one data-sensitive and one data-insensitive to select the best matches for paral-
lel programs. The paper [6] developed a method for predicting the optimal thread 
data in the presence of additional load for data parallel applications and developed 
a comprehensive model to reduce the effects of additional loads and to increase the 
average speedup. The paper [16] adopted a machine learning method to learn thread 
partition knowledge and applied it to direct thread partition, in which parameters of 
thread partition are set by expert experience (also called expert experience-based 
(EE-based) thread partition). The paper [13] presented a novel graph-based thread 
partition approach, firstly to characterize programs by graphs, integrating static and 
dynamic features, as well as data and control information; secondly to learn partition 
knowledge and predict partition for unseen programs.



7368 Y. Li et al.

1 3

Compared with conventional heuristic rules-based thread partitions, this paper 
applies a program characteristic-based thread partition approach (Pro CTA) to learn 
thread partition knowledge from TLS sample set and predicts the partition scheme 
of unseen programs in accordance with their characteristics. The advantages of 
ProCTA can be summarized to two aspects: (1) programs’ partition schemes are gen-
erated in accordance with their characteristics; (2) partition knowledge can be learnt 
by machine learning methods so to facilitate the partition of unknown programs. 
The remaining parts of this paper are organized as follows: in Sect. 2, we first briefly 
describe the SpMT execution model and motivation of ProCTA; the process of 
thread partition is detailed in Sect. 3; in Sect. 4, thread partitions (loop partition and 
unloop partition) are presented; Sect. 5 presents experimental evaluation; conclusion 
and future work are shown in Sect. 6; final section presents acknowledgement.

2  Execution model and motivation

2.1  Execution model

TLS parallelizes serial programs and performs parallel execution on multi-core plat-
forms to improve speedup performance. Figure 1 presents the TLS execution model 
[11, 12], in which the spawning point (SP) and the control quasi-independent point 
(CQIP) instructions map the serial programs into multi-threaded programs. Accord-
ing to serial semantics, there is only one thread that allows data to be submitted 
to memory at each moment. This thread is called a definite thread, and the other 
threads are regarded as speculative threads. Every speculative thread consists of two 
parts, including precomputation-slice (p-slice) [18] and serial program code. P-slice 
is a small piece of code that is generated by the compiler based on slicing techniques 
to predict the live-ins used in speculative threads (a set of variables to be referenced 
before the value is defined).

(a) (b) (c) (d)

Fig. 1  Model of thread-level speculation: a sequential execution; b successful parallel execution; c failed 
parallel execution; d RAW 
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Figure 1 shows four cases of SpMT execution. In Fig.  1a, it is assumed that 
a multi-threaded program is equivalent to a serial execution program because it 
ignores SP-CQIP. Figure  1b shows the successful speculative execution: when 
the thread T1 encounters sp, if idle cores exist, the new speculative thread T2 is 
spawned; otherwise, the T2 is not spawned. When T1 encounters CQIP, it will 
validate the live-ins used by T2 in p-slice. If the validation is correct, T1 submits 
the execution results and releases the core resource. Then, the execution permis-
sion is transferred from T1 to the successor thread of T1; Fig.  1c presents the 
state that validation of T2 fails, and speculative execution fails so to withdraw 
T2, and p-slice is not performed; Fig. 1d illustrates the situation of restarting the 
thread in the current state when read-after-write (RAW) violation happens.

2.2  Motivation

Figure 2 shows 13 partitioning schemes and their corresponding speedups for the 
same subprocedure of the health() in Olden benchmarks [1]. The x-axis repre-
sents the 13 partition schemes of the same subprocedure, while the vertical axis 
represents their corresponding speedups. The partition scheme is represented by a 
five-dimensional vector whose composition is present in Chapter 4. The motiva-
tion denoted by Fig. 2 is that the procedures’ partition schemes influence achieved 
speedups after their partition. How to predict the partition scheme based on pro-
grams’ characteristics has become a research goal of this paper.

Fig. 2  13 Partition schemes and speedups of procedures in health()
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3  Process of thread partition

This paper adopts a program characteristic-based thread partition approach 
(ProCTA), which partitions a serial program into multi-threaded programs that can 
be executed in parallel. ProCTA firstly extracts programs’ features, obtaining their 
optimal partition schemes according to their characteristics, and then performs their 
partitions according to their partition schemes.

Figure 3 shows the framework of thread partition based on programs’ character-
istics. In this figure, the dashed box indicates the process that the K Nearest Neigh-
bor (KNN) algorithm learns partition knowledge of the training samples, and then 
builds a predictive model. Once the prediction model is constructed, characteristics 
of the program to be partitioned are regarded as the input of prediction model, and 
the partition scheme of an unknown program is predicted, and partition of the pro-
gram is guided in the Prophet system [4, 24] to generate the multi-threaded pro-
grams. Then the evaluation is completed in the Prophet simulator, outputting the 
programs’ results and speedups.

The framework consists of five main components, namely:

Fig. 3  Scheme of thread partition based on program characteristics
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1. Expression of programs’ characteristics;
2. Expression of partition schemes;
3. Construction of prediction model;
4. Thread partition;
5. Experimental evaluation.

The following sections describe the five components in the partition scheme.

3.1  Expression of program’s features

ProCTA obtains programs’ features by using a system’s profiler in Prophet [2] to 
collect programs’ running information. If the instruction is a type of jump instruc-
tion, the jump is processed according to whether or not the jump is a loop jump, 
and if the jump is normal, the current jump is updated. If the jump is a back edge, 
then the average number of dynamic instructions LD is calculated in accordance with 
the dynamic instruction number of current jump M, the average number of dynamic 
instructions in the history record LD−1 , the total iteration count D and the average 
number of dynamic instructions LD ; Second, if the instruction is the procedure’s 
return instruction, then the average number of dynamic instructions NC is calculated 
in accordance with the current number of dynamic instructions S, the average num-
ber of dynamic instructions in the history record NC−1 , the total called number C; 
Finally, the results will be annotated with the corresponding information domain of 
information probe function.

Figure 4 shows the initial storage structure of characteristics extracted by a pro-
filer, where c is the number of dynamic instructions, l is the branch probability, b 
is the number of basic blocks, d1 is the number of branch instructions, d2 is the 
number of jump instructions, d3 is the number of add/subtract instructions, d4 is the 
number of multiplication/division instructions, n is the number of programs’ basic 
blocks. Every element in the matrix M is a feature vector, which includes dynamic 
instructions, probabilities of loop branches, probabilities of branches, number of 
branch instructions, number of jump instructions, number of addition/subtraction 
instructions, number of multiplication/division instructions, and number of pro-
grams’ basic blocks.

In this paper, static and dynamic features are used to represent the input sample 
program. To facilitate the calculation of the Euclidean distance, the eight variables 
x1 ∼ x8 are chosen to represent features of the sample programs. The specifically 
used characteristic variables and their descriptions are shown in Table 1.

3.2  Expression of partition scheme

The partition scheme is extracted from the nonloop partition algorithms and loop 
partition algorithms in Prophet [1]. The execution flow of partition algorithm (non-
loop partition and loop partition) can be described by the flow diagram in Fig. 5. 
Seen from Fig. 5, the upper limit of thread granularity (ULoTG), the lower limit of 
the thread size (LLoTG), data dependent count (DDC), the upper limit of spawning 
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distance (ULoSD), the lower limit of spawning distance (LLoSD) directly affect the 
process of thread partition, in which the 1st decision and 2nd decision refer to two dif-
ferent decisions (such as: spawning new threads, loop unrolling and repartition). If 
thread partition can be reduced to a decision problem, then these five thresholds are 
the direct factors determining the answer to the problem. It can be concluded that 
the changes of the five thresholds directly affect the decision of partition, thus affect-
ing the result of partition. Therefore, this paper selects these five thresholds as the 
optimized parameters.

Partition scheme is expressed by H =< h1, h2, h3, h4, h5 >=< LLoTG,ULoTG,

DDC,LLoSD,ULoSD > . Where, LLoTG, ULoTG, DDC, LLoSD, ULoSD are the 
five primary parameters affecting partition effects during thread partition.

Fig. 4  Expression of program characteristics

Table 1  Used characteristics 
and their descriptions

Variables Descriptions of characteristics

x1 Number of basic blocks
x2 Number of dynamic instructions
x3 Number of branch instructions
x4 Probabilities of branches
x5 Probabilities of loop branches
x6 Number of addition and subtraction
x7 Number of multiplication and division
x8 Number of loop instructions
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3.3  Construction of prediction model

The foremost process of predicting the partition scheme is usually to obtain the 
sample set of thread-level speculation. When a new program is to be partitioned, 
its characteristics are extracted, and then its partition scheme is predicted from the 
sample set using the KNN method, in which the partition scheme of program to be 
partitioned is determined by the k nearest similar samples.

The sample set can be formally represented as T = {Xorig−i,Hpar−i} ( i ∈ 1, 2 , ..., 
N). In the sample set, every training sample composes of the characteristic vector 
Xorig and the corresponding approximately optimal partition scheme Hpar . Each 
characteristic vector Xorig = [x1, x2,… , xn] corresponds to a point in the N-dimen-
sional space. Every approximate optimal partition structure Hpar composes of a set 
of parameters, that are, Hpar = [h1, h2, h3, h4, h5] , where h1 represents the lower 
limit of the thread granularity, h2 represents the upper limit of the thread granular-
ity, h3 represents the data dependence number, h4 represents the lower limit of the 
spawning distance, and h5 represents the upper limit of the spawning distance.

When two procedures have the same characteristics, then they have the same 
partitioning scheme, which is a prerequisite for predicting the partitioning 
scheme. Based on the KNN-based partitioning scheme, we first need to build a 
predictive model. All the training samples < Xorig−i , Hpar−i > are stored in the 

Fig. 5  Flow chart of extracting partition schemes



7374 Y. Li et al.

1 3

training samples to form a KNN prediction model. The KNN-based classifica-
tion method simply stores all the training samples, and the classification of the 
samples is delayed until a new sample needs classification. When a new program 
needs to be partitioned, it first extracts the program’ characteristics and then finds 
the K closest samples of it. The distance is calculated by the Euclidean distance, 
as shown in formula (1).

where n denotes the dimensionality of a characteristic vector, xr
j
 and xr

i
 , respectively, 

represent the rth attribute values of xj and xi.
When we find k nearest neighbor samples, in order to ensure the correctness 

of the prediction model, the class labels of input procedures are obtained by mul-
tiplying the class labels of the k nearest neighbors and their weights and adding 
together to get the tag. The closer the procedure is to be partitioned, the greater 
the weight is given to it, and with the distance between the characteristic vectors 
increasing, the weights must be attenuated rapidly, but the total weight must be 1. 
In order to assign weights to the class labels of k nearest neighbors, formula (2) is 
introduced, which is the Maclaurin series of exponential functions ex.

When x = 1, then the formula (3) comes.

Based on formula (3), we can deduce the distribution weight formula as (4).

Formula (4) indicates the sequence label of the procedure to be separated from the 
k nearest neighbor samples. The greater the similarity distance is, the greater the 
weight is. As Olden benchmarks are used, and the number of sample set is not large, 
the value of k is set to 10, the nearest 10 procedures close to the procedure which is 
to be partitioned are considered, and weights are summed to partition schemes of 
procedures which are to be partitioned.

Since the objective function Hpar is a thread partition scheme, its class label 
corresponds to five thresholds. For a procedure xq which is to be partitioned, its 
class label is the sum of all multiplications between the k nearest neighbors and 
their respective weight values, as shown in equation (5).
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where ĥj(xq) represents the jth threshold of the procedure to be partitioned, hj(xi) rep-
resents the jth threshold of the ith procedure in the training samples. The weight(i) is 
the weight formula of the ith procedure.

The prediction algorithm of the KNN-based partition scheme is shown in 
Table 2. 

4  Thread partition

For a program to be partitioned, once the partition scheme has been obtained, 
then the partition scheme is used to partition the program into multiple threads. 
Thread partition is performed on the CFG (control flow graph) of a program. First 
of all, it is necessary to partition the loops of the program, as the loop partition is 
complicated. Because the loops can be divided into inner loops and outer loops, 
it is necessary to divide them so to facilitate their respective partitions. When 
the loops complete their partition, the next is to sum up all loops to superblocks, 
then CFGs of the original programs turn into SCFGs (super control flow graphs). 
After the most likely path in SCFG is selected according to the cost evaluation 
model, nonloops are partitioned. Finally, we need construct precomputation-slice 
for every thread that has been partitioned. The acceleration process of thread par-
tition is shown in Fig. 6.

4.1  Cost evaluation model

When setting up a cost model, the assumption that there is an unlimited number of 
processor cores exists, so the problem of thread withdrawing due to a lack of processor 
cores need not be taken into account. In the Prophet compilation system, every instruc-
tion occupies only one clock cycle, so the execution time of the program segment can 
be expressed by the number of instructions contained in the segment. When a thread 

Table 2  K Nearest Neighbor Classifier
Input: training examples represented by <X,H> (X denotes
feature vectors and H represents a set of partition schemes),
xq (characteristic vector of unseen program)
Output: h(xq)(predicted partition scheme for xq)
k nearest neighbor (<X,H>, Xq) {
1 for every training sample <x, h(x)> do
2 store the sample to the list training examples;
3 end for
4 Let x1∼xk be the k nearest samples to xq from train sample;
5 Let weight(1)∼weight(k) be the weights for the k nearest neighbors(k ∈ N);
6 define an unseen vector xq;
7 for(int j=1;j≤5;j++){
8 hj(xq) ← i=10

i=1 {hj(xi) ∗ weight(i)};
9 };



7376 Y. Li et al.

1 3

is executed, a new thread is spawned and there are three related instructions along the 
spawning path, as shown in Fig.  6. When two threads are speculatively executed in 
parallel, that is, the parent thread is executed on one processor core and its sub-thread is 
executed on another processor core, the sub-thread first needs to execute the precompu-
tation-slice, whose length is expressed as p-slice. The distance from the parent thread to 
the sub-thread is sp_dis, and the number of related instructions contained in the spawn-
ing path is dep_cnt. Then, p-slice can be represented by dep_cnt + C, where C repre-
sents the overhead for creating a precomputation-slice. From Fig. 6, you can obtain the 
execution time of sub-threads, as shown in formula (6):

Formula (6) can only show the local acceleration effect. If you want to get the global 
acceleration effect, you need to get the acceleration effect of each instruction, so you 
need to divide the advance time by the instruction number of speculative threads. 
That is, the evaluation definition of partition for nonloops is shown in Formula (7).

where w is the weight factor, thread_size is the instruction number of speculative 
threads, and evaluate is the evaluation value.

For the partition of nonloops, the features of every procedure are firstly extracted. 
Then, the machine learning method is used to predict the optimized partitioning 
scheme of every procedure in programs from the already built TLS sample set, and 
the predicted partition scheme consists of LLoTG, ULoTG, DDC, LLoSD, ULoSD. 
The partition scheme is a set of constraints on the candidate threads. During the 
process of program partition, the candidate threads need to satisfy the constraints 

(6)time_ahead = sp_dis − pslice = sp_dis − dep_cnt − C

(7)evaluate =
sp_dis − dep_cnt

thread_size
× w

(a)

(b)

Fig. 6  Effect of thread-level speculation
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of thread granularity, data dependence and spawning distance. When the constraints 
are satisfied, the points with the maximum evaluate value during every partition are 
selected as the boundaries of the thread.

4.2  Loop partition

Before starting to partition the loops, loops are firstly induced into superblocks, 
as shown in Fig.  7. Every node in Fig.  7a represents a basic block, and nodes 
5− > 6− > 8− > 7− > ⋯− > 5− > ⋯ are a loop structure that can be induced to a 
supernode (i.e., gray node 5 ′  ). After the loop nodes are induced, this paper performs 
loop partitions. In order to fully exploit the parallelism of loops, loops are parti-
tioned into several parts. In this paper, loops’ partition is divided into two catego-
ries, namely loop nested partition and loop internal partition. For the nested iteration 
of loops, this paper uses sequential spawning to partition it, that is, the ith loop itera-
tion spawns the (i + 1)th loop iteration ( i ∈ N ). If the loop contains a large number 
of instructions, it will be partitioned by use of nonloop partition approach. The algo-
rithm of loop partition is present in Table 3.

Figure 8 is a diagram of loop partition, which is used to explain the partition algo-
rithm of loops. If the loop body is greater than the upper limit of thread granularity h2, 
the loop is partitioned with nonloop partition approach. If it is a nested loop, the most 
likely path is found first, the optimal dependence opt_ddc is calculated, the number 
of instructions that express the inner loop is size_of_loop, and the spawning distance 
is spawn_dis ; If opt_ddc is less than the dependency threshold h3 and size_of_loop 

(a) (b) (c)

Fig. 7  Progress of thread partition
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is within [h1, h2] and spawn_dis is within [h4, h5], a new thread is built. Figure 8 
contains the inner loop and the outer loop, loop nested iterations are displayed in the 
dashed box, and the outer loops contain more instructions. In order to explore the 
potential parallelism of the program, ProCTA partitions loops in many points. If the 
body of the loop is too small, the loops need to be unrolled, and then the unrolled 
loops are partitioned according to the nonloop partition approach. It then identifies the 
back edges, induces the loops as a supernode, and examines data dependence among 
successive iterations in the loops. If it is beneficial to start a thread at the next iteration 
of the loop, a new thread is created at the next iteration of the loop.

The dashed box in Fig.  8 represents loops, which can be induced into a node, 
resulting in a starting node of loops with node 1 and an outer loop region with a 
back edge of 6− > 1 . If you remove the back edge 6− > 1 , you get a nonloop, which 
can use nonloop partition approach to perform the thread partition.

4.3  Nonloop partition

In this code (shown in Table 4), curr_thread represents the subgraph of the recent 
candidate thread, which is the set of basic blocks between the current thread’s start_
block and the last candidate thread’s end_block. The subgraph in curr_thread can-
not be used as a single thread because of too much data dependence or too small 
threads; curr_thread is empty if start_block coincides with the end_block of the pre-
vious thread. The post-dominator block of the start_block is represented with pdom_
block, and the subgraph of speculative path between start_block and pdom_block is 

Table 3  Algorithm 1: Pseudocode of loop partition
Algorithm 1 Loop Partition
Input: Loop L
Output: Parallel threads set PTS
Loop Partition(loop L){
define the starting block of L: start block ;
define the ending block of L: end block ;
define the lower limit of thread granularity: H1;
define the upper limit of thread granularity: H2;
define the lower limit of data dependence: H3;
define the lower limit of spawning distance: H4;
define the upper limit of spawning distance: H5;
set the likely path starting from start block to end block to be likely path;
define the loop size with dynamic instructions number in L;
define good dependence opt ddc with find good dependence(start block, end block,
likely path,&spawn pos);
while(loop size <= H1){

unroll(L);
update(loop size)}

if((H1≤thread size≤H2)&(H4≤spawning distance≤ H5)&(opt ddc<H3))
create a new thread create new thread(end block, spawn pos, likely path),
and assign it to curr thread

end if
record new thread curr thread into PTS }



7379

1 3

ProCTA: program characteristic‑based thread partition…

represented by path. Thread partition refers to granularity and spawning distance of 
thread subgraph. According to the maximum threshold h2 and the minimum thresh-
old h1, the granularity of a thread subgraph is divided into three types: moderate 
granularity, large granularity, and small granularity. In Fig. 9, it is assumed that the 
critical path of thread partitioning is 0-1-3-4-5-6.

1. If the granularity of the current thread (0-1) is within the interval [h1, h2] 
and the spawning distance is within the interval [h4, h5] and the data dependence 
between it and the succeeding thread is not greater than the upper limit of data 
dependence h3, a new thread will be built, as shown in Fig. 9a.

2. If thread granularity of the current thread is too large, that is, the granularity is 
in the interval [h2, +), you need to partition program code between start_block and 
pdom_block. For the subgraph consisting of basic blocks 0, 1 and 2, if thread granu-
larity of basic block 0 is within [h1, h2] and the data dependence count between 
basic block 1 and future_thread is less than h3, a new thread is built at the starting of 
basic block 1, as shown in Fig. 9b.

3. f the granularity of current thread is small, that is, the granularity is in the 
interval (0, h1], then the path and pdom_block are added to the subgraph of curr_
thread, and program code between post-dominate nodes and end_block is analyzed 
and partitioned. Granularity and data dependence are met, a new thread is built at 
the beginning of basic block 5, as shown in Fig. 9c.

Fig. 8  Diagram of loop partition
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(a) (b) (c)

Fig. 9  Diagram of nonloop partition

Table 4  Algorithm 2: Pseudocode of nonloop partition
Algorithm 2 Non-loop Partition
Input: Non-loop L
Output: Curr thread
Non-loop Partition(nonloop L){
define the starting block of L: start block ;
define the ending block of L: end block ;
define the lower limit of thread granularity: H1;
define the upper limit of thread granularity: H2;
define the lower limit of data dependence: H3;
define the lower limit of spawning distance: H4;
define the upper limit of spawning distance: H5;
set the likely path starting from start block to end block to be likely path;
set the nearest post dominator block of start block to be pdom block ;
set the optimal dependence to be opt ddc;
define the current thread to be curr thread ;
calculate the optimal dependence opt ddc with find good dependence(start block,
end block, likely path,&spawn pos);
if(start block==end block) then

return the value of curr thread ;
end if
if((H1+0.25*(H2-H1)≤thread size≤H2-0.25*(H2-H1))&(H4≤spawning distance≤H5)
&(opt ddc≤H3))
then create a new thread with function create new thread() in accordance with
start block,end block, and the likely path;
else if ((H2-0.25*(H2-H1)≤thread size≤H2)&(H4≤spawning distance≤H5)&(opt ddc
≤H3)) then update thread size with curr thread+path.first block ;
if ((H1≤thread size≤H1+0.25*(H2-H1))&(opt ddc<H3))
Partition threads in accordance with first block,end block, and curr thread,
and assign new thread to curr thread ;
end if end if
return curr thread ;}
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5  Experimental evaluation

In this section, the experimental setup is introduced, to provide details of the Prophet 
simulator as well as used benchmarks during the evaluation. In the last, we present 
the results’ analysis and discussions.

5.1  Configuration of experiment

We perform the implementation of the execution model as well as thread partition 
algorithm on the platform: Prophet (its module chart is shown in Fig. 10), which is 
based on SUIF/MACHSUIF [28]. At the level of SUIF’s intermediate representation 
(IR), we complete the compiler analysis. The profiling information is produced from 
SUIF-IR in the form of annotation by profiler of Prophet. The SUIF programs which 
are interpreted and executed by profiler provide information, including dynamic 
instruction number, prediction of control flow path, and prediction of data values. 
The Prophet simulator can simulate 1–64 pipelined mips-based R3000 processing 
elements (PE) and we run ProCAT with 4 PEs or 8 PEs. This simulating process is 
an execution-driven simulation, which performs the execution of binaries generated 
by Prophet compiler. Every PE fetches and executes instructions from one thread, 
and orderly issues 4 instructions per cycle. Every PE owns a private multiversioned 
L1 cache, which has latency of 2 cycles. Speculative results of PEs are buffered and 
cache communication is performed via multiversioned L1 caches. With a snoopy 
bus, a write-back L2 cache is shared by the 8 PEs. The parameter configuration of 
simulator is shown in Table 5.

Olden benchmarks [23] and SPEC2000 [20] are used to evaluate ProCTA. As 
a popular benchmarks of studying irregular programs, Olden benchmarks process 
complex control flows, pointer-intensive, as well as irregular data structures. The 
benchmarks own dynamic structures, e.g., trees, lists, and DAGs, et al, which are all 
difficult to get parallelized using conventional approaches.

ProCTA makes use of one leave-one-out cross-validation method to perform its 
results’ evaluation. It means that the program which is to be partitioned is firstly 
moved from training set, and based on the left programs a prediction model is built. 
The method has an advantage that the prediction model never sees the programs 
to be partitioned before. The partition schemes for the left programs are built by 

Fig. 10  Module chart of Prophet
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applying the prediction model. Every program is performed with this process in 
turn.

The paper uses multi-version caches to solve memory dependence and uses regis-
ter files to solve register data dependence.

5.2  Experiment results

In ProCTA, it firstly needs to extract the characteristics of every procedure in pro-
grams, and then learns the partition schemes in according to the built sample set. 
Finally, ProCTA applies the learnt partition schemes to partitioning programs. We 
use every procedure in Olden benchmarks as a sample to get the characteristic vec-
tor of every procedure by constructing characteristics of every procedure in the pro-
gram and then use the explicit partition method based on expert experience to obtain 
the optimal partition scheme for every procedure, so that the sample is expressed 
in the form of “characteristic vector+ partition scheme”. All the samples are con-
structed together to form a sample set.

In this paper, KNN algorithm is used to obtain the partition scheme of every pro-
cedure in the program to be partitioned. Because the validation set and the training 
set use the same sample set, a “leave-one-out” approach is used to validate the effec-
tiveness of ProCTA. The so-called “leave-one-out” method is that when testing a 
sample, the sample can not be obtained directly from the sample set and can only be 

Table 5  Configuration of Prophet simulation (per PE)

Parameters of configuration Value

Function units 4 int ALU (1 cycle)
4 int Mult/Div (3/12 cycles)
4 fp ALU (2 cycles)
4 fp Mult/Div (4/12 cycles)

Spec. buffer size Fully associative 2KB (1 cycle)
Bandwidth for Fetch,In order issue 4 Instructions
and commit pipeline stages Fetch/issue/Ex/WB/commit
Architectural registers 32 int and 32 fp
L1-Cache (multiversioned) 4-Way associative 64 KB (32B/Block)

Hit latency 2
LRU replacement

L2-cache 4-way associative 2MB (64 B/block)
5 hit latency, 80 cycles (miss)
LRU replacement

Spawn overhead 5 Cycles
Validation overhead 15 Cycles
Local register 1 Cycle
Commit overhead 5 Cycles
k 5
Similarity threshold 0.5
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estimated from other samples by machine learning. The following will take Olden’s 
mst benchmark as an example to show how to predict the partition scheme of every 
procedure in the mst program (the number of inter-thread dependence, the lower 
limit of thread granularity, the upper limit of thread granularity, the lower limit of 
spawning distance, and the upper limit of spawning distance), which are shown in 
Table 6. Firstly, the sample of every procedures in the mst program is removed from 
the sample, avoiding the optimal partition scheme of the mst program. Then, the fea-
tures of every procedure in the mst program are extracted and the predicted partition 
scheme of every procedure is learned from the sample set (Table 7).

Next, we will apply the predicted partitioning scheme to thread partition. For 
convenience, we use the procedure called HashDelete in the mst benchmark as an 
example to show the results of thread partition. According to the predicted partition 
scheme, the maximum data dependence count is 3, the lower limit of thread granu-
larity is 9, the upper limit of thread granularity is 45, the lower limit of spawning 
distance is 4 and the upper limit of spawning distance is 20, as shown in Table 6.

5.3  Analysis of time complexity

The time spent in the ProCTA can be divided into two phases: training and predic-
tion. During the training phase, a machine learning approach is used to learn the 
knowledge of thread partition, while the machine learning method is applied to pre-
dicting thread partition during prediction phase.

5.3.1  Time complexity of training phase

In the worst case, selecting the k ( k ∈ N ) nearest neighbors from the n1 samples 
needs to implement n1 comparisons of similarity, so the time complexity of training 
phase is �(n1) , where n1 ∈ N.

Table 6  Configuration of 
Prophet simulation (per PE)

Name of procedure Actual partition scheme Predicted 
partition 
scheme

HashLookup (3 9 35 3 20) (3 6 43 4 20)
BlueRule (3 9 30 3 20) (3 8 37 4 20)
ComputeMst (3 9 32 3 20) (3 3 32 4 20)
Dealwithargs (5 5 45 3 51) (4 9 35 4 50)
MakeGraph (4 9 35 3 45) (8 9 42 4 40)
AddEdges (3 7 43 3 20) (3 5 34 4 20)
HashInsert (3 9 36 3 20) (3 5 37 4 20)
MakeHash (3 9 31 3 20) (3 3 45 4 20)
HashDelete (4 8 40 3 20) (3 9 45 4 20)
Main (6 9 45 3 45) (9 3 31 4 20)
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5.3.2  Time complexity of prediction phase

Once the nearest k samples are selected, the next step is to implement the prediction 
of partition schemes for unknown programs. The prediction process can be divided 
into two subprocedures: searching the partition positions and inserting partition 
instructions (i.e., spawning point (SP) and control quasi-independent point(CQIP)).

Table 7  Partition diagram of HashDelete in mst 
Source Programs before Partition
void HashDelete(int key,Hash hash){
HashEntry *ent ;
int j = (hash-> mapfunc)(key);
for (ent=&(hash->array [j]);(*ent) && (*ent)->key !=key ; ent=&((*ent)-> next));
assert(4,*ent);
HashEntrytmp = *ent ; *ent =(*ent)->next ; localfree(tmp);}

MIPS Expression after Partition
Spawn HashDelete.L11
la $sp,-152($sp)
ust
sw $fp,0($sp)
sw $ra,4($sp)
sw $s0,8($sp)
sw $s1,12($sp)
move $s0,$a0
move $s1,$a1
li $v1,4
addu $t0,$s1,$v1
lw $t0,0($t0)
cqip HashDelete.L11
HashDelete.L11:
Pslice entry HashDelete.L11
li $v1,4
addu $t0,$s1,$v1
lw $t0,0($t0)
Pslice exit HashDelete.L11
move $a0,$s0
move $fp,$sp
fst $sp
jalr $t0,$ra
nop
move $t1,$zero
addu $t2,$s1,$t1
lw $t3,0($t2)
lw $a2,0($t5)
li $a3,8
lw $v0,0($t5)
la $v1,0($zero)
· · ·
lw $v1,0($t6)
la $t0,0($zero)
sne $v0,$v1,$t0
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Of the two subprocedures, the time spent in inserting partition instructions can 
be ignored. Assume the number of partition instructions (sp and cqip) is k , then the 
time spent in inserting SP and CQIP is:

As n1 ≪ n , so the time complexity is �(n2).

5.4  Performance comparisons and analysis

In the process of thread partition based on programs’ characteristics, the first is to 
obtain the programs’ characteristics, and then machine learning methods are used 
to obtain partition schemes (i.e., a set of thresholds) from sample set. Every proce-
dure in the program has a different set of thresholds, and then this set of thresholds 
are used for thread partition, and finally the partitioned threads are implemented on 
the Prophet simulator with 4 cores to get the speedup of every program. Table  8 
shows the comparison results among the heuristic rule-based (HR-based) partition 
approach, the expert experience-based (EE-based) partition approach, and ProCTA.

In order to show the effectiveness of ProCTA, this paper makes a comparison 
between ProCTA and HR-based thread partition. As EE-based thread partition is 
an explicit partition method, it can select the appropriate thread boundaries accord-
ing to the control dependence and data dependence, and can adjust the positions 
of SP,CQIP several times, so can get better speedups than implicit partition. So in 
Table 8 the acceleration effect of EE-based thread partition approach is better than 
HR-based thread partition and ProCTA. But EE-based thread partition needs to 
manually select the thread boundary, so fully using this approach to partition all the 
serial irregular programs is basically impossible. Olden benchmarks set don’t con-
tain too many programs, so manually adjusting thread boundaries is feasible, we can 
use this kind of approach to obtain the better partition scheme of threads to construct 
TLS sample set. So, when we analyze the experimental results, we only compare the 

n × (n − 1) + (n − 2) × (n − 3) + (n − 4) × (n − 5) + ⋅ ⋅ ⋅ ⋅ +(n − k) × (n − k − 1) = �(n2)

Table 8  Comparison results of speedups

Olden benchmarks Speedups (HR) Speedups (EE) Speedups (Pro) Increase ratio 
(with HR) (%)

bh 1.96693 2.21235 2.35125 19.54
em3d 2.60674 2.90956 2.95012 13.17
health 1.61705 1.88107 1.91244 18.27
perimeter 1.31302 1.53643 1.55243 18.23
voronoi 1.89448 1.95454 2.45089 29.37
treeadd 1.2461 1.53145 1.51012 21.19
power 2.08593 2.21734 2.35345 12.82
tsp 1.8205 1.97292 1.95123 7.18
mst 1.43446 1.58382 1.75238 22.16
bisort 1.27188 1.46015 1.62128 27.47
Mean 1.72571 1.92596 2.040559 18.24
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performance of the original HR-based thread partition approach and ProCTA, and 
then we will analyze the experimental results, in which we only select several pro-
gram analysis in the Olden benchmarks.

The main data structure in program bh is a heterogeneous octree, which has very 
complex data dependence. Its parallelisms exist in and out of loop structures. For 
the heuristic rules, the same partition scheme is used to partition all the procedures 
in the bh program, and for the ProCTA, the optimal partition scheme matching with 
the characteristic of every procedure in the program can be predicted, and then the 
partition scheme is applied to the threads. However, due to the existence of more 
dependence, ProCTA gains 19.54% performance improvement.

The main data structure of the program em3d is a single linked list, in which the 
loop structure occupies most of the total, and all the parallelism of program em3d 
comes mainly from the loop structure. Although ProCTA can obtain the partition 
scheme suitable for its own characteristics, the characteristic extraction of the loop 
is not enough. Finally, compared with the HR-based partition approach, 13.17% per-
formance improvement is achieved.

The main data structure of the program health is a two-way linked list, which 
contains both loop and nonloop structure. In which, the loop structure is the main 
source of parallelism, and compared with the HR-based partition approach, you 
can obtain the partition scheme of health suitable for its characteristics. During the 
partition of loop partition, although the loops occupy most of the program, but it 
has a large loop body and simple data dependence, so health gets 18.27% speedup 
improvement.

The main data structure of program perimeter is four fork tree, the program pri-
marily contains loop structure, rather than nonloop structure. The parallelism of 
program mainly comes from the decomposition of function into multi-threading. 
Because it is difficult to predict the return value of the function, the acceleration 
effect of these two approaches is not good. Compared with HR-based partition 
approach, ProCTA selects the suitable partition scheme in line with its own charac-
teristics, and the partition scheme is not affected by loops. The assessment models 
adopted by nonloops are used to find the better thread partition boundary for the 
current program, so the final execution performance improves 18.23%.

The main data structure of program treeadd is two fork tree, which is a simple 
program structure. In this structure, only four procedures are included, and the pro-
gram does not contain any loop structure, so the parallelism comes from the non-
loops. ProCTA can select the appropriate partition scheme for every procedure, but 
there are many recursive function calls and data dependence in treeadd, and finally 
the program achieves 21.19% performance improvement.

The main data structure of the program bisort is two fork tree. Through the analy-
sis of the source code, we can see that there are only three loops in the program, and 
only two loops are executed, and the granularity of the loop is relatively small. Then 
the parallelism of program is mainly from the nonloops, although the program has 
a certain number of data dependence, but mining the potential parallelism from the 
application program can be performed based on the ProCTA in every procedure. 
ProCTA selects the suitable partition scheme for every procedure, finally obtains 
27.47% performance improvement.
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Figure 11 shows the speedup comparisons between HR-based and ProCTA. Seen 
from Fig. 11, the speedups obtained by ProCTA in Olden benchmarks have a certain 
improvement than the speedups gotten by using HR-based thread partition approach. 
However, different programs have obvious differences in the speedup improvement. 
Overall, the HR-based approach obtains an average speedup of 1.725, while ProCTA 
gets an average speedup of 2.040, so the average speedup improves by 18.24%, indi-
cating that ProCTA has a good effect on the program partition. Figure 12 shows the 
speedups of some SPEC2000 and Olden benchmarks on different number of cores.

In order to show the effectiveness of ProCTA, this paper compares the ProCTA with 
HR-based thread partition approach and EE-based thread partition approach. Because 

Fig. 11  Comparison diagram of speedups for olden benchmarks

Fig. 12  Speedup comparison diagram of olden and SPEC2000 benchmarks over different PEs
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EE-based thread partition approach is an explicit partition approach, it can select the 
appropriate thread boundaries according to the control dependence and data depend-
ence, and can adjust SP, CQIP points several times, getting better speedups than 
implicit partition, so speedups obtained by EE-based in Table 8 are better than HR-
based and ProCTA. But EE-based thread partition approach needs to manually select 
the thread boundary, so it is basically impossible to partition all the serial irregular pro-
grams. Olden benchmarks contain not too much programs, thread boundary through 
manual annotation is feasible, we can use this kind of approach which is used to obtain 
better partition scheme of thread to construct TLS sample set. So, when we analyze 
the experimental results, we only compare the performance of the original HR-based 
approach with ProCTA, and then we will analyze the experimental results, in which we 
only select several programs in the Olden benchmarks to perform analysis.

6  Conclusion and future work

6.1  Conclusion

Based on the Prophet system, this paper proposes a program characteristic-based 
thread partition approach (ProCTA), and applies a machine learning method to thread 
partition. According to programs’ characteristics, thread partition schemes are pre-
dicted from the sample set, and the programs are partitioned by the predicted partition 
scheme. Finally, the program is executed on the Prophet simulator to verify its execu-
tion performance. The research contents and conclusions are as follows:

6.1.1  Construction of sample set

This paper proposes a method for constructing TLS sample set. TLS sample set are 
composed of characteristics and partition schemes. The characteristics are extracted 
from the speculative path of the control flow graph in every procedure of the program. 
For the acquisition of partition schemes in TLS samples, an explicit partition method 
based on expert experience is used to explicitly partition the program, and the optimal 
partition scheme of every procedure in the program is calculated.

6.1.2  Thread partition based on programs’ characteristics

This paper uses the KNN classification algorithm in machine learning to obtain a better 
partition scheme for every procedure, which is to be partitioned from the constructed 
TLS sample set.

6.1.3  Prediction of partition scheme

This paper proposes an approach to partition programs based on predicted partition 
scheme. In this paper, the nonloop partition and loop partition are carried out, respec-
tively. An evaluation model is established for the nonloops of the program, and the 
nonloops are iteratively partitioned according to the evaluation model. For the loops, 
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the nested iterations and the inner loops are, respectively, partitioned; for nested loops, 
sequential spawning and nested iteration are used for thread partition; for the inner 
loops, nonloop partition approach is adopted for thread partition.

6.1.4  Validation using olden benchmarks

Using Olden benchmarks, ProCTA verifies its effect on Prophet system, and its effect 
is compared with the original partition results. The experimental results show that 
ProCTA obtains 18.24% speedup increasement than HR-based approach on average.

6.2  Future work

In the aspect of platform, the development of TLS is gradually developing from single 
machine multi-core component to distributed platform, such as parallelism of decom-
pression algorithm with thread-level speculation in [26] on Spark platform. In order to 
overcome the limitation that simulated annealing algorithm (SA) is of low efficiency 
as the conventional SA algorithm still runs with low parallelism on new platforms and 
the computing resource cannot be fully utilized, Wang raised a speculative parallel SA 
algorithm [27] based on Apache Spark to expand the algorithm’s parallelism and to 
enhance its efficiency. So the future work focuses on the parallelism of algorithms (i.e., 
crawling algorithm) on Hadoop or Apache Spark.
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