
Vol:.(1234567890)

The Journal of Supercomputing (2019) 75:7366–7390
https://doi.org/10.1007/s11227-019-02943-1

1 3

ProCTA: program characteristic‑based thread partition
approach

Yuxiang Li1 · Zhiyong Zhang1 · Lili Zhang1 · Danmei Niu1 · Changwei Zhao1 ·
Bin Song1 · Liuke Liang2

Published online: 3 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
As a thread-level automatic parallelization technique, thread-level speculation (TLS)
can partition irregular serial programs into multiple threads and implement these
threads in parallel on multi-core architectures to improve the performance of pro-
grams. To tackle the problem that the conventional heuristic rule-based (HR-based)
thread partition approach partitions programs of different characteristics with the
same scheme and several programs have bad partition results, this paper proposes
a program characteristic-based thread partition approach (ProCTA), which uses a
machine learning method to learn the knowledge of thread partition from TLS sam-
ple set and predicts thread partition schemes for unknown programs in accordance
with programs’ characteristics and finally applies the schemes to thread partition. In
Prophet compilation system, Olden benchmarks are used to evaluate ProCTA, and a
comparison is made between ProCTA and conventional heuristic rules-based parti-
tion approach. The experimental results show that the proposed approach can deliver
an average 18.24% speedup improvement than HR-based thread partition approach.

Keywords Thread-level speculation · Thread partition · Program characteristics ·
Partition scheme

 * Zhiyong Zhang
 xidianzzy@126.com

 Yuxiang Li
 liyuxiang@haust.edu.cn

1 Henan Joint International Research Laboratory of Cyberspace Security Applications, Henan
University of Science and Technology, Luoyang, People’s Republic of China

2 Luoyang Normal University, Luoyang, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02943-1&domain=pdf

7367

1 3

ProCTA: program characteristic‑based thread partition…

1 Introduction

With development of semiconductor evolving from the single core era to the
multi-core era, how to accelerate the serial programs and make full use of the rich
multi-core resources becomes a research focus. Thread-level speculation (TLS)
[10, 26, 27] can automatically partition one serial program into multiple threads
in an aggressive way, and allows the existence of fuzzy control dependence and
data dependence between threads, and allows multiple threads to simultaneously
execute on a Chip Multiprocessor (CMP), so to exploit thread-level parallelism
for programs. Various schemes of TLS emerge as the time requires. The products
of TLS’s development can be classified into three headings, including:

1. systems: Hydra [7], Multiscalar [5], POSH [17], STAMPede [25], Mitosis [18,
21], Pinot [19], and Prophet [2, 4, 24];

2. algorithms [26, 27];
3. related products [9–11, 14, 15]

Thread partition approach is of vital importance to improve the speedups of pro-
grams. Conventional thread partition methods usually adopted heuristic rules to
perform thread partition. The paper [8] used a series of balanced minimum cuts
to partition programs under consideration of various overheads of thread parti-
tion in total, and adjusted the edges’ weights of programs’ control flow graphs
after every partition. The paper [3] compared different partition algorithms quan-
titatively under the given computing architecture and proposed a new dynamic
partition algorithm:Mex-slicing, which outperformed other dynamic partition
algorithms, but could not reach a balance between predictability and cost. In con-
clusion, these heuristic rules-based (HR-based) thread partition methods have the
“one-size-fits-all” limitations, namely uniform heuristic rules are utilized to parti-
tion all programs, which lead to that it is hard to get the optimal thread partition
scheme for every program.

To solve the shortcomings of HR-based thread partition method [18, 22], machine
learning methods are successfully introduced into TLS. The paper [2] proposed a
method that the portable compiler used the machine learning method to match the
parallelism of a program to a multi-core processor. This paper developed two predic-
tors, one data-sensitive and one data-insensitive to select the best matches for paral-
lel programs. The paper [6] developed a method for predicting the optimal thread
data in the presence of additional load for data parallel applications and developed
a comprehensive model to reduce the effects of additional loads and to increase the
average speedup. The paper [16] adopted a machine learning method to learn thread
partition knowledge and applied it to direct thread partition, in which parameters of
thread partition are set by expert experience (also called expert experience-based
(EE-based) thread partition). The paper [13] presented a novel graph-based thread
partition approach, firstly to characterize programs by graphs, integrating static and
dynamic features, as well as data and control information; secondly to learn partition
knowledge and predict partition for unseen programs.

7368 Y. Li et al.

1 3

Compared with conventional heuristic rules-based thread partitions, this paper
applies a program characteristic-based thread partition approach (Pro CTA) to learn
thread partition knowledge from TLS sample set and predicts the partition scheme
of unseen programs in accordance with their characteristics. The advantages of
ProCTA can be summarized to two aspects: (1) programs’ partition schemes are gen-
erated in accordance with their characteristics; (2) partition knowledge can be learnt
by machine learning methods so to facilitate the partition of unknown programs.
The remaining parts of this paper are organized as follows: in Sect. 2, we first briefly
describe the SpMT execution model and motivation of ProCTA; the process of
thread partition is detailed in Sect. 3; in Sect. 4, thread partitions (loop partition and
unloop partition) are presented; Sect. 5 presents experimental evaluation; conclusion
and future work are shown in Sect. 6; final section presents acknowledgement.

2 Execution model and motivation

2.1 Execution model

TLS parallelizes serial programs and performs parallel execution on multi-core plat-
forms to improve speedup performance. Figure 1 presents the TLS execution model
[11, 12], in which the spawning point (SP) and the control quasi-independent point
(CQIP) instructions map the serial programs into multi-threaded programs. Accord-
ing to serial semantics, there is only one thread that allows data to be submitted
to memory at each moment. This thread is called a definite thread, and the other
threads are regarded as speculative threads. Every speculative thread consists of two
parts, including precomputation-slice (p-slice) [18] and serial program code. P-slice
is a small piece of code that is generated by the compiler based on slicing techniques
to predict the live-ins used in speculative threads (a set of variables to be referenced
before the value is defined).

(a) (b) (c) (d)

Fig. 1 Model of thread-level speculation: a sequential execution; b successful parallel execution; c failed
parallel execution; d RAW

7369

1 3

ProCTA: program characteristic‑based thread partition…

Figure 1 shows four cases of SpMT execution. In Fig. 1a, it is assumed that
a multi-threaded program is equivalent to a serial execution program because it
ignores SP-CQIP. Figure 1b shows the successful speculative execution: when
the thread T1 encounters sp, if idle cores exist, the new speculative thread T2 is
spawned; otherwise, the T2 is not spawned. When T1 encounters CQIP, it will
validate the live-ins used by T2 in p-slice. If the validation is correct, T1 submits
the execution results and releases the core resource. Then, the execution permis-
sion is transferred from T1 to the successor thread of T1; Fig. 1c presents the
state that validation of T2 fails, and speculative execution fails so to withdraw
T2, and p-slice is not performed; Fig. 1d illustrates the situation of restarting the
thread in the current state when read-after-write (RAW) violation happens.

2.2 Motivation

Figure 2 shows 13 partitioning schemes and their corresponding speedups for the
same subprocedure of the health() in Olden benchmarks [1]. The x-axis repre-
sents the 13 partition schemes of the same subprocedure, while the vertical axis
represents their corresponding speedups. The partition scheme is represented by a
five-dimensional vector whose composition is present in Chapter 4. The motiva-
tion denoted by Fig. 2 is that the procedures’ partition schemes influence achieved
speedups after their partition. How to predict the partition scheme based on pro-
grams’ characteristics has become a research goal of this paper.

Fig. 2 13 Partition schemes and speedups of procedures in health()

7370 Y. Li et al.

1 3

3 Process of thread partition

This paper adopts a program characteristic-based thread partition approach
(ProCTA), which partitions a serial program into multi-threaded programs that can
be executed in parallel. ProCTA firstly extracts programs’ features, obtaining their
optimal partition schemes according to their characteristics, and then performs their
partitions according to their partition schemes.

Figure 3 shows the framework of thread partition based on programs’ character-
istics. In this figure, the dashed box indicates the process that the K Nearest Neigh-
bor (KNN) algorithm learns partition knowledge of the training samples, and then
builds a predictive model. Once the prediction model is constructed, characteristics
of the program to be partitioned are regarded as the input of prediction model, and
the partition scheme of an unknown program is predicted, and partition of the pro-
gram is guided in the Prophet system [4, 24] to generate the multi-threaded pro-
grams. Then the evaluation is completed in the Prophet simulator, outputting the
programs’ results and speedups.

The framework consists of five main components, namely:

Fig. 3 Scheme of thread partition based on program characteristics

7371

1 3

ProCTA: program characteristic‑based thread partition…

1. Expression of programs’ characteristics;
2. Expression of partition schemes;
3. Construction of prediction model;
4. Thread partition;
5. Experimental evaluation.

The following sections describe the five components in the partition scheme.

3.1 Expression of program’s features

ProCTA obtains programs’ features by using a system’s profiler in Prophet [2] to
collect programs’ running information. If the instruction is a type of jump instruc-
tion, the jump is processed according to whether or not the jump is a loop jump,
and if the jump is normal, the current jump is updated. If the jump is a back edge,
then the average number of dynamic instructions LD is calculated in accordance with
the dynamic instruction number of current jump M, the average number of dynamic
instructions in the history record LD−1 , the total iteration count D and the average
number of dynamic instructions LD ; Second, if the instruction is the procedure’s
return instruction, then the average number of dynamic instructions NC is calculated
in accordance with the current number of dynamic instructions S, the average num-
ber of dynamic instructions in the history record NC−1 , the total called number C;
Finally, the results will be annotated with the corresponding information domain of
information probe function.

Figure 4 shows the initial storage structure of characteristics extracted by a pro-
filer, where c is the number of dynamic instructions, l is the branch probability, b
is the number of basic blocks, d1 is the number of branch instructions, d2 is the
number of jump instructions, d3 is the number of add/subtract instructions, d4 is the
number of multiplication/division instructions, n is the number of programs’ basic
blocks. Every element in the matrix M is a feature vector, which includes dynamic
instructions, probabilities of loop branches, probabilities of branches, number of
branch instructions, number of jump instructions, number of addition/subtraction
instructions, number of multiplication/division instructions, and number of pro-
grams’ basic blocks.

In this paper, static and dynamic features are used to represent the input sample
program. To facilitate the calculation of the Euclidean distance, the eight variables
x1 ∼ x8 are chosen to represent features of the sample programs. The specifically
used characteristic variables and their descriptions are shown in Table 1.

3.2 Expression of partition scheme

The partition scheme is extracted from the nonloop partition algorithms and loop
partition algorithms in Prophet [1]. The execution flow of partition algorithm (non-
loop partition and loop partition) can be described by the flow diagram in Fig. 5.
Seen from Fig. 5, the upper limit of thread granularity (ULoTG), the lower limit of
the thread size (LLoTG), data dependent count (DDC), the upper limit of spawning

7372 Y. Li et al.

1 3

distance (ULoSD), the lower limit of spawning distance (LLoSD) directly affect the
process of thread partition, in which the 1st decision and 2nd decision refer to two dif-
ferent decisions (such as: spawning new threads, loop unrolling and repartition). If
thread partition can be reduced to a decision problem, then these five thresholds are
the direct factors determining the answer to the problem. It can be concluded that
the changes of the five thresholds directly affect the decision of partition, thus affect-
ing the result of partition. Therefore, this paper selects these five thresholds as the
optimized parameters.

Partition scheme is expressed by H =< h1, h2, h3, h4, h5 >=< LLoTG,ULoTG,

DDC,LLoSD,ULoSD > . Where, LLoTG, ULoTG, DDC, LLoSD, ULoSD are the
five primary parameters affecting partition effects during thread partition.

Fig. 4 Expression of program characteristics

Table 1 Used characteristics
and their descriptions

Variables Descriptions of characteristics

x1 Number of basic blocks
x2 Number of dynamic instructions
x3 Number of branch instructions
x4 Probabilities of branches
x5 Probabilities of loop branches
x6 Number of addition and subtraction
x7 Number of multiplication and division
x8 Number of loop instructions

7373

1 3

ProCTA: program characteristic‑based thread partition…

3.3 Construction of prediction model

The foremost process of predicting the partition scheme is usually to obtain the
sample set of thread-level speculation. When a new program is to be partitioned,
its characteristics are extracted, and then its partition scheme is predicted from the
sample set using the KNN method, in which the partition scheme of program to be
partitioned is determined by the k nearest similar samples.

The sample set can be formally represented as T = {Xorig−i,Hpar−i} (i ∈ 1, 2 , ...,
N). In the sample set, every training sample composes of the characteristic vector
Xorig and the corresponding approximately optimal partition scheme Hpar . Each
characteristic vector Xorig = [x1, x2,… , xn] corresponds to a point in the N-dimen-
sional space. Every approximate optimal partition structure Hpar composes of a set
of parameters, that are, Hpar = [h1, h2, h3, h4, h5] , where h1 represents the lower
limit of the thread granularity, h2 represents the upper limit of the thread granular-
ity, h3 represents the data dependence number, h4 represents the lower limit of the
spawning distance, and h5 represents the upper limit of the spawning distance.

When two procedures have the same characteristics, then they have the same
partitioning scheme, which is a prerequisite for predicting the partitioning
scheme. Based on the KNN-based partitioning scheme, we first need to build a
predictive model. All the training samples < Xorig−i , Hpar−i > are stored in the

Fig. 5 Flow chart of extracting partition schemes

7374 Y. Li et al.

1 3

training samples to form a KNN prediction model. The KNN-based classifica-
tion method simply stores all the training samples, and the classification of the
samples is delayed until a new sample needs classification. When a new program
needs to be partitioned, it first extracts the program’ characteristics and then finds
the K closest samples of it. The distance is calculated by the Euclidean distance,
as shown in formula (1).

where n denotes the dimensionality of a characteristic vector, xr
j
 and xr

i
 , respectively,

represent the rth attribute values of xj and xi.
When we find k nearest neighbor samples, in order to ensure the correctness

of the prediction model, the class labels of input procedures are obtained by mul-
tiplying the class labels of the k nearest neighbors and their weights and adding
together to get the tag. The closer the procedure is to be partitioned, the greater
the weight is given to it, and with the distance between the characteristic vectors
increasing, the weights must be attenuated rapidly, but the total weight must be 1.
In order to assign weights to the class labels of k nearest neighbors, formula (2) is
introduced, which is the Maclaurin series of exponential functions ex.

When x = 1, then the formula (3) comes.

Based on formula (3), we can deduce the distribution weight formula as (4).

Formula (4) indicates the sequence label of the procedure to be separated from the
k nearest neighbor samples. The greater the similarity distance is, the greater the
weight is. As Olden benchmarks are used, and the number of sample set is not large,
the value of k is set to 10, the nearest 10 procedures close to the procedure which is
to be partitioned are considered, and weights are summed to partition schemes of
procedures which are to be partitioned.

Since the objective function Hpar is a thread partition scheme, its class label
corresponds to five thresholds. For a procedure xq which is to be partitioned, its
class label is the sum of all multiplications between the k nearest neighbors and
their respective weight values, as shown in equation (5).

(1)d(xj, xi) =

√

√

√

√

n
∑

r=1

(xr
i
− xr

j
)2

(2)ex ≈ 1 + x +
x2

2!
+⋯ +

xn

n!
, n ∈ N

(3)1 ≈
2

e
+

1

e ∗ 2!
+

1

e ∗ 3!
+

1

e ∗ 4!
+⋯ +

1

e ∗ n!
, n�N

(4)weight(i) =

{

2

e
(i = 1)

1

i!∗e
(i > 1)

(5)ĥj(xq) =

i=10
∑

i=1

hj(xi) ∗ weight(i) (1 ≤ j ≤ 5)

7375

1 3

ProCTA: program characteristic‑based thread partition…

where ĥj(xq) represents the jth threshold of the procedure to be partitioned, hj(xi) rep-
resents the jth threshold of the ith procedure in the training samples. The weight(i) is
the weight formula of the ith procedure.

The prediction algorithm of the KNN-based partition scheme is shown in
Table 2.

4 Thread partition

For a program to be partitioned, once the partition scheme has been obtained,
then the partition scheme is used to partition the program into multiple threads.
Thread partition is performed on the CFG (control flow graph) of a program. First
of all, it is necessary to partition the loops of the program, as the loop partition is
complicated. Because the loops can be divided into inner loops and outer loops,
it is necessary to divide them so to facilitate their respective partitions. When
the loops complete their partition, the next is to sum up all loops to superblocks,
then CFGs of the original programs turn into SCFGs (super control flow graphs).
After the most likely path in SCFG is selected according to the cost evaluation
model, nonloops are partitioned. Finally, we need construct precomputation-slice
for every thread that has been partitioned. The acceleration process of thread par-
tition is shown in Fig. 6.

4.1 Cost evaluation model

When setting up a cost model, the assumption that there is an unlimited number of
processor cores exists, so the problem of thread withdrawing due to a lack of processor
cores need not be taken into account. In the Prophet compilation system, every instruc-
tion occupies only one clock cycle, so the execution time of the program segment can
be expressed by the number of instructions contained in the segment. When a thread

Table 2 K Nearest Neighbor Classifier
Input: training examples represented by <X,H> (X denotes
feature vectors and H represents a set of partition schemes),
xq (characteristic vector of unseen program)
Output: h(xq)(predicted partition scheme for xq)
k nearest neighbor (<X,H>, Xq) {
1 for every training sample <x, h(x)> do
2 store the sample to the list training examples;
3 end for
4 Let x1∼xk be the k nearest samples to xq from train sample;
5 Let weight(1)∼weight(k) be the weights for the k nearest neighbors(k ∈ N);
6 define an unseen vector xq;
7 for(int j=1;j≤5;j++){
8 hj(xq) ← i=10

i=1 {hj(xi) ∗ weight(i)};
9 };

7376 Y. Li et al.

1 3

is executed, a new thread is spawned and there are three related instructions along the
spawning path, as shown in Fig. 6. When two threads are speculatively executed in
parallel, that is, the parent thread is executed on one processor core and its sub-thread is
executed on another processor core, the sub-thread first needs to execute the precompu-
tation-slice, whose length is expressed as p-slice. The distance from the parent thread to
the sub-thread is sp_dis, and the number of related instructions contained in the spawn-
ing path is dep_cnt. Then, p-slice can be represented by dep_cnt + C, where C repre-
sents the overhead for creating a precomputation-slice. From Fig. 6, you can obtain the
execution time of sub-threads, as shown in formula (6):

Formula (6) can only show the local acceleration effect. If you want to get the global
acceleration effect, you need to get the acceleration effect of each instruction, so you
need to divide the advance time by the instruction number of speculative threads.
That is, the evaluation definition of partition for nonloops is shown in Formula (7).

where w is the weight factor, thread_size is the instruction number of speculative
threads, and evaluate is the evaluation value.

For the partition of nonloops, the features of every procedure are firstly extracted.
Then, the machine learning method is used to predict the optimized partitioning
scheme of every procedure in programs from the already built TLS sample set, and
the predicted partition scheme consists of LLoTG, ULoTG, DDC, LLoSD, ULoSD.
The partition scheme is a set of constraints on the candidate threads. During the
process of program partition, the candidate threads need to satisfy the constraints

(6)time_ahead = sp_dis − pslice = sp_dis − dep_cnt − C

(7)evaluate =
sp_dis − dep_cnt

thread_size
× w

(a)

(b)

Fig. 6 Effect of thread-level speculation

7377

1 3

ProCTA: program characteristic‑based thread partition…

of thread granularity, data dependence and spawning distance. When the constraints
are satisfied, the points with the maximum evaluate value during every partition are
selected as the boundaries of the thread.

4.2 Loop partition

Before starting to partition the loops, loops are firstly induced into superblocks,
as shown in Fig. 7. Every node in Fig. 7a represents a basic block, and nodes
5− > 6− > 8− > 7− > ⋯− > 5− > ⋯ are a loop structure that can be induced to a
supernode (i.e., gray node 5 ′). After the loop nodes are induced, this paper performs
loop partitions. In order to fully exploit the parallelism of loops, loops are parti-
tioned into several parts. In this paper, loops’ partition is divided into two catego-
ries, namely loop nested partition and loop internal partition. For the nested iteration
of loops, this paper uses sequential spawning to partition it, that is, the ith loop itera-
tion spawns the (i + 1)th loop iteration (i ∈ N). If the loop contains a large number
of instructions, it will be partitioned by use of nonloop partition approach. The algo-
rithm of loop partition is present in Table 3.

Figure 8 is a diagram of loop partition, which is used to explain the partition algo-
rithm of loops. If the loop body is greater than the upper limit of thread granularity h2,
the loop is partitioned with nonloop partition approach. If it is a nested loop, the most
likely path is found first, the optimal dependence opt_ddc is calculated, the number
of instructions that express the inner loop is size_of_loop, and the spawning distance
is spawn_dis ; If opt_ddc is less than the dependency threshold h3 and size_of_loop

(a) (b) (c)

Fig. 7 Progress of thread partition

7378 Y. Li et al.

1 3

is within [h1, h2] and spawn_dis is within [h4, h5], a new thread is built. Figure 8
contains the inner loop and the outer loop, loop nested iterations are displayed in the
dashed box, and the outer loops contain more instructions. In order to explore the
potential parallelism of the program, ProCTA partitions loops in many points. If the
body of the loop is too small, the loops need to be unrolled, and then the unrolled
loops are partitioned according to the nonloop partition approach. It then identifies the
back edges, induces the loops as a supernode, and examines data dependence among
successive iterations in the loops. If it is beneficial to start a thread at the next iteration
of the loop, a new thread is created at the next iteration of the loop.

The dashed box in Fig. 8 represents loops, which can be induced into a node,
resulting in a starting node of loops with node 1 and an outer loop region with a
back edge of 6− > 1 . If you remove the back edge 6− > 1 , you get a nonloop, which
can use nonloop partition approach to perform the thread partition.

4.3 Nonloop partition

In this code (shown in Table 4), curr_thread represents the subgraph of the recent
candidate thread, which is the set of basic blocks between the current thread’s start_
block and the last candidate thread’s end_block. The subgraph in curr_thread can-
not be used as a single thread because of too much data dependence or too small
threads; curr_thread is empty if start_block coincides with the end_block of the pre-
vious thread. The post-dominator block of the start_block is represented with pdom_
block, and the subgraph of speculative path between start_block and pdom_block is

Table 3 Algorithm 1: Pseudocode of loop partition
Algorithm 1 Loop Partition
Input: Loop L
Output: Parallel threads set PTS
Loop Partition(loop L){
define the starting block of L: start block ;
define the ending block of L: end block ;
define the lower limit of thread granularity: H1;
define the upper limit of thread granularity: H2;
define the lower limit of data dependence: H3;
define the lower limit of spawning distance: H4;
define the upper limit of spawning distance: H5;
set the likely path starting from start block to end block to be likely path;
define the loop size with dynamic instructions number in L;
define good dependence opt ddc with find good dependence(start block, end block,
likely path,&spawn pos);
while(loop size <= H1){

unroll(L);
update(loop size)}

if((H1≤thread size≤H2)&(H4≤spawning distance≤ H5)&(opt ddc<H3))
create a new thread create new thread(end block, spawn pos, likely path),
and assign it to curr thread

end if
record new thread curr thread into PTS }

7379

1 3

ProCTA: program characteristic‑based thread partition…

represented by path. Thread partition refers to granularity and spawning distance of
thread subgraph. According to the maximum threshold h2 and the minimum thresh-
old h1, the granularity of a thread subgraph is divided into three types: moderate
granularity, large granularity, and small granularity. In Fig. 9, it is assumed that the
critical path of thread partitioning is 0-1-3-4-5-6.

1. If the granularity of the current thread (0-1) is within the interval [h1, h2]
and the spawning distance is within the interval [h4, h5] and the data dependence
between it and the succeeding thread is not greater than the upper limit of data
dependence h3, a new thread will be built, as shown in Fig. 9a.

2. If thread granularity of the current thread is too large, that is, the granularity is
in the interval [h2, +), you need to partition program code between start_block and
pdom_block. For the subgraph consisting of basic blocks 0, 1 and 2, if thread granu-
larity of basic block 0 is within [h1, h2] and the data dependence count between
basic block 1 and future_thread is less than h3, a new thread is built at the starting of
basic block 1, as shown in Fig. 9b.

3. f the granularity of current thread is small, that is, the granularity is in the
interval (0, h1], then the path and pdom_block are added to the subgraph of curr_
thread, and program code between post-dominate nodes and end_block is analyzed
and partitioned. Granularity and data dependence are met, a new thread is built at
the beginning of basic block 5, as shown in Fig. 9c.

Fig. 8 Diagram of loop partition

7380 Y. Li et al.

1 3

(a) (b) (c)

Fig. 9 Diagram of nonloop partition

Table 4 Algorithm 2: Pseudocode of nonloop partition
Algorithm 2 Non-loop Partition
Input: Non-loop L
Output: Curr thread
Non-loop Partition(nonloop L){
define the starting block of L: start block ;
define the ending block of L: end block ;
define the lower limit of thread granularity: H1;
define the upper limit of thread granularity: H2;
define the lower limit of data dependence: H3;
define the lower limit of spawning distance: H4;
define the upper limit of spawning distance: H5;
set the likely path starting from start block to end block to be likely path;
set the nearest post dominator block of start block to be pdom block ;
set the optimal dependence to be opt ddc;
define the current thread to be curr thread ;
calculate the optimal dependence opt ddc with find good dependence(start block,
end block, likely path,&spawn pos);
if(start block==end block) then

return the value of curr thread ;
end if
if((H1+0.25*(H2-H1)≤thread size≤H2-0.25*(H2-H1))&(H4≤spawning distance≤H5)
&(opt ddc≤H3))
then create a new thread with function create new thread() in accordance with
start block,end block, and the likely path;
else if ((H2-0.25*(H2-H1)≤thread size≤H2)&(H4≤spawning distance≤H5)&(opt ddc
≤H3)) then update thread size with curr thread+path.first block ;
if ((H1≤thread size≤H1+0.25*(H2-H1))&(opt ddc<H3))
Partition threads in accordance with first block,end block, and curr thread,
and assign new thread to curr thread ;
end if end if
return curr thread ;}

7381

1 3

ProCTA: program characteristic‑based thread partition…

5 Experimental evaluation

In this section, the experimental setup is introduced, to provide details of the Prophet
simulator as well as used benchmarks during the evaluation. In the last, we present
the results’ analysis and discussions.

5.1 Configuration of experiment

We perform the implementation of the execution model as well as thread partition
algorithm on the platform: Prophet (its module chart is shown in Fig. 10), which is
based on SUIF/MACHSUIF [28]. At the level of SUIF’s intermediate representation
(IR), we complete the compiler analysis. The profiling information is produced from
SUIF-IR in the form of annotation by profiler of Prophet. The SUIF programs which
are interpreted and executed by profiler provide information, including dynamic
instruction number, prediction of control flow path, and prediction of data values.
The Prophet simulator can simulate 1–64 pipelined mips-based R3000 processing
elements (PE) and we run ProCAT with 4 PEs or 8 PEs. This simulating process is
an execution-driven simulation, which performs the execution of binaries generated
by Prophet compiler. Every PE fetches and executes instructions from one thread,
and orderly issues 4 instructions per cycle. Every PE owns a private multiversioned
L1 cache, which has latency of 2 cycles. Speculative results of PEs are buffered and
cache communication is performed via multiversioned L1 caches. With a snoopy
bus, a write-back L2 cache is shared by the 8 PEs. The parameter configuration of
simulator is shown in Table 5.

Olden benchmarks [23] and SPEC2000 [20] are used to evaluate ProCTA. As
a popular benchmarks of studying irregular programs, Olden benchmarks process
complex control flows, pointer-intensive, as well as irregular data structures. The
benchmarks own dynamic structures, e.g., trees, lists, and DAGs, et al, which are all
difficult to get parallelized using conventional approaches.

ProCTA makes use of one leave-one-out cross-validation method to perform its
results’ evaluation. It means that the program which is to be partitioned is firstly
moved from training set, and based on the left programs a prediction model is built.
The method has an advantage that the prediction model never sees the programs
to be partitioned before. The partition schemes for the left programs are built by

Fig. 10 Module chart of Prophet

7382 Y. Li et al.

1 3

applying the prediction model. Every program is performed with this process in
turn.

The paper uses multi-version caches to solve memory dependence and uses regis-
ter files to solve register data dependence.

5.2 Experiment results

In ProCTA, it firstly needs to extract the characteristics of every procedure in pro-
grams, and then learns the partition schemes in according to the built sample set.
Finally, ProCTA applies the learnt partition schemes to partitioning programs. We
use every procedure in Olden benchmarks as a sample to get the characteristic vec-
tor of every procedure by constructing characteristics of every procedure in the pro-
gram and then use the explicit partition method based on expert experience to obtain
the optimal partition scheme for every procedure, so that the sample is expressed
in the form of “characteristic vector+ partition scheme”. All the samples are con-
structed together to form a sample set.

In this paper, KNN algorithm is used to obtain the partition scheme of every pro-
cedure in the program to be partitioned. Because the validation set and the training
set use the same sample set, a “leave-one-out” approach is used to validate the effec-
tiveness of ProCTA. The so-called “leave-one-out” method is that when testing a
sample, the sample can not be obtained directly from the sample set and can only be

Table 5 Configuration of Prophet simulation (per PE)

Parameters of configuration Value

Function units 4 int ALU (1 cycle)
4 int Mult/Div (3/12 cycles)
4 fp ALU (2 cycles)
4 fp Mult/Div (4/12 cycles)

Spec. buffer size Fully associative 2KB (1 cycle)
Bandwidth for Fetch,In order issue 4 Instructions
and commit pipeline stages Fetch/issue/Ex/WB/commit
Architectural registers 32 int and 32 fp
L1-Cache (multiversioned) 4-Way associative 64 KB (32B/Block)

Hit latency 2
LRU replacement

L2-cache 4-way associative 2MB (64 B/block)
5 hit latency, 80 cycles (miss)
LRU replacement

Spawn overhead 5 Cycles
Validation overhead 15 Cycles
Local register 1 Cycle
Commit overhead 5 Cycles
k 5
Similarity threshold 0.5

7383

1 3

ProCTA: program characteristic‑based thread partition…

estimated from other samples by machine learning. The following will take Olden’s
mst benchmark as an example to show how to predict the partition scheme of every
procedure in the mst program (the number of inter-thread dependence, the lower
limit of thread granularity, the upper limit of thread granularity, the lower limit of
spawning distance, and the upper limit of spawning distance), which are shown in
Table 6. Firstly, the sample of every procedures in the mst program is removed from
the sample, avoiding the optimal partition scheme of the mst program. Then, the fea-
tures of every procedure in the mst program are extracted and the predicted partition
scheme of every procedure is learned from the sample set (Table 7).

Next, we will apply the predicted partitioning scheme to thread partition. For
convenience, we use the procedure called HashDelete in the mst benchmark as an
example to show the results of thread partition. According to the predicted partition
scheme, the maximum data dependence count is 3, the lower limit of thread granu-
larity is 9, the upper limit of thread granularity is 45, the lower limit of spawning
distance is 4 and the upper limit of spawning distance is 20, as shown in Table 6.

5.3 Analysis of time complexity

The time spent in the ProCTA can be divided into two phases: training and predic-
tion. During the training phase, a machine learning approach is used to learn the
knowledge of thread partition, while the machine learning method is applied to pre-
dicting thread partition during prediction phase.

5.3.1 Time complexity of training phase

In the worst case, selecting the k (k ∈ N) nearest neighbors from the n1 samples
needs to implement n1 comparisons of similarity, so the time complexity of training
phase is �(n1) , where n1 ∈ N.

Table 6 Configuration of
Prophet simulation (per PE)

Name of procedure Actual partition scheme Predicted
partition
scheme

HashLookup (3 9 35 3 20) (3 6 43 4 20)
BlueRule (3 9 30 3 20) (3 8 37 4 20)
ComputeMst (3 9 32 3 20) (3 3 32 4 20)
Dealwithargs (5 5 45 3 51) (4 9 35 4 50)
MakeGraph (4 9 35 3 45) (8 9 42 4 40)
AddEdges (3 7 43 3 20) (3 5 34 4 20)
HashInsert (3 9 36 3 20) (3 5 37 4 20)
MakeHash (3 9 31 3 20) (3 3 45 4 20)
HashDelete (4 8 40 3 20) (3 9 45 4 20)
Main (6 9 45 3 45) (9 3 31 4 20)

7384 Y. Li et al.

1 3

5.3.2 Time complexity of prediction phase

Once the nearest k samples are selected, the next step is to implement the prediction
of partition schemes for unknown programs. The prediction process can be divided
into two subprocedures: searching the partition positions and inserting partition
instructions (i.e., spawning point (SP) and control quasi-independent point(CQIP)).

Table 7 Partition diagram of HashDelete in mst
Source Programs before Partition
void HashDelete(int key,Hash hash){
HashEntry *ent ;
int j = (hash-> mapfunc)(key);
for (ent=&(hash->array [j]);(*ent) && (*ent)->key !=key ; ent=&((*ent)-> next));
assert(4,*ent);
HashEntrytmp = *ent ; *ent =(*ent)->next ; localfree(tmp);}

MIPS Expression after Partition
Spawn HashDelete.L11
la $sp,-152($sp)
ust
sw $fp,0($sp)
sw $ra,4($sp)
sw $s0,8($sp)
sw $s1,12($sp)
move $s0,$a0
move $s1,$a1
li $v1,4
addu $t0,$s1,$v1
lw $t0,0($t0)
cqip HashDelete.L11
HashDelete.L11:
Pslice entry HashDelete.L11
li $v1,4
addu $t0,$s1,$v1
lw $t0,0($t0)
Pslice exit HashDelete.L11
move $a0,$s0
move $fp,$sp
fst $sp
jalr $t0,$ra
nop
move $t1,$zero
addu $t2,$s1,$t1
lw $t3,0($t2)
lw $a2,0($t5)
li $a3,8
lw $v0,0($t5)
la $v1,0($zero)
· · ·
lw $v1,0($t6)
la $t0,0($zero)
sne $v0,$v1,$t0

7385

1 3

ProCTA: program characteristic‑based thread partition…

Of the two subprocedures, the time spent in inserting partition instructions can
be ignored. Assume the number of partition instructions (sp and cqip) is k , then the
time spent in inserting SP and CQIP is:

As n1 ≪ n , so the time complexity is �(n2).

5.4 Performance comparisons and analysis

In the process of thread partition based on programs’ characteristics, the first is to
obtain the programs’ characteristics, and then machine learning methods are used
to obtain partition schemes (i.e., a set of thresholds) from sample set. Every proce-
dure in the program has a different set of thresholds, and then this set of thresholds
are used for thread partition, and finally the partitioned threads are implemented on
the Prophet simulator with 4 cores to get the speedup of every program. Table 8
shows the comparison results among the heuristic rule-based (HR-based) partition
approach, the expert experience-based (EE-based) partition approach, and ProCTA.

In order to show the effectiveness of ProCTA, this paper makes a comparison
between ProCTA and HR-based thread partition. As EE-based thread partition is
an explicit partition method, it can select the appropriate thread boundaries accord-
ing to the control dependence and data dependence, and can adjust the positions
of SP,CQIP several times, so can get better speedups than implicit partition. So in
Table 8 the acceleration effect of EE-based thread partition approach is better than
HR-based thread partition and ProCTA. But EE-based thread partition needs to
manually select the thread boundary, so fully using this approach to partition all the
serial irregular programs is basically impossible. Olden benchmarks set don’t con-
tain too many programs, so manually adjusting thread boundaries is feasible, we can
use this kind of approach to obtain the better partition scheme of threads to construct
TLS sample set. So, when we analyze the experimental results, we only compare the

n × (n − 1) + (n − 2) × (n − 3) + (n − 4) × (n − 5) + ⋅ ⋅ ⋅ ⋅ +(n − k) × (n − k − 1) = �(n2)

Table 8 Comparison results of speedups

Olden benchmarks Speedups (HR) Speedups (EE) Speedups (Pro) Increase ratio
(with HR) (%)

bh 1.96693 2.21235 2.35125 19.54
em3d 2.60674 2.90956 2.95012 13.17
health 1.61705 1.88107 1.91244 18.27
perimeter 1.31302 1.53643 1.55243 18.23
voronoi 1.89448 1.95454 2.45089 29.37
treeadd 1.2461 1.53145 1.51012 21.19
power 2.08593 2.21734 2.35345 12.82
tsp 1.8205 1.97292 1.95123 7.18
mst 1.43446 1.58382 1.75238 22.16
bisort 1.27188 1.46015 1.62128 27.47
Mean 1.72571 1.92596 2.040559 18.24

7386 Y. Li et al.

1 3

performance of the original HR-based thread partition approach and ProCTA, and
then we will analyze the experimental results, in which we only select several pro-
gram analysis in the Olden benchmarks.

The main data structure in program bh is a heterogeneous octree, which has very
complex data dependence. Its parallelisms exist in and out of loop structures. For
the heuristic rules, the same partition scheme is used to partition all the procedures
in the bh program, and for the ProCTA, the optimal partition scheme matching with
the characteristic of every procedure in the program can be predicted, and then the
partition scheme is applied to the threads. However, due to the existence of more
dependence, ProCTA gains 19.54% performance improvement.

The main data structure of the program em3d is a single linked list, in which the
loop structure occupies most of the total, and all the parallelism of program em3d
comes mainly from the loop structure. Although ProCTA can obtain the partition
scheme suitable for its own characteristics, the characteristic extraction of the loop
is not enough. Finally, compared with the HR-based partition approach, 13.17% per-
formance improvement is achieved.

The main data structure of the program health is a two-way linked list, which
contains both loop and nonloop structure. In which, the loop structure is the main
source of parallelism, and compared with the HR-based partition approach, you
can obtain the partition scheme of health suitable for its characteristics. During the
partition of loop partition, although the loops occupy most of the program, but it
has a large loop body and simple data dependence, so health gets 18.27% speedup
improvement.

The main data structure of program perimeter is four fork tree, the program pri-
marily contains loop structure, rather than nonloop structure. The parallelism of
program mainly comes from the decomposition of function into multi-threading.
Because it is difficult to predict the return value of the function, the acceleration
effect of these two approaches is not good. Compared with HR-based partition
approach, ProCTA selects the suitable partition scheme in line with its own charac-
teristics, and the partition scheme is not affected by loops. The assessment models
adopted by nonloops are used to find the better thread partition boundary for the
current program, so the final execution performance improves 18.23%.

The main data structure of program treeadd is two fork tree, which is a simple
program structure. In this structure, only four procedures are included, and the pro-
gram does not contain any loop structure, so the parallelism comes from the non-
loops. ProCTA can select the appropriate partition scheme for every procedure, but
there are many recursive function calls and data dependence in treeadd, and finally
the program achieves 21.19% performance improvement.

The main data structure of the program bisort is two fork tree. Through the analy-
sis of the source code, we can see that there are only three loops in the program, and
only two loops are executed, and the granularity of the loop is relatively small. Then
the parallelism of program is mainly from the nonloops, although the program has
a certain number of data dependence, but mining the potential parallelism from the
application program can be performed based on the ProCTA in every procedure.
ProCTA selects the suitable partition scheme for every procedure, finally obtains
27.47% performance improvement.

7387

1 3

ProCTA: program characteristic‑based thread partition…

Figure 11 shows the speedup comparisons between HR-based and ProCTA. Seen
from Fig. 11, the speedups obtained by ProCTA in Olden benchmarks have a certain
improvement than the speedups gotten by using HR-based thread partition approach.
However, different programs have obvious differences in the speedup improvement.
Overall, the HR-based approach obtains an average speedup of 1.725, while ProCTA
gets an average speedup of 2.040, so the average speedup improves by 18.24%, indi-
cating that ProCTA has a good effect on the program partition. Figure 12 shows the
speedups of some SPEC2000 and Olden benchmarks on different number of cores.

In order to show the effectiveness of ProCTA, this paper compares the ProCTA with
HR-based thread partition approach and EE-based thread partition approach. Because

Fig. 11 Comparison diagram of speedups for olden benchmarks

Fig. 12 Speedup comparison diagram of olden and SPEC2000 benchmarks over different PEs

7388 Y. Li et al.

1 3

EE-based thread partition approach is an explicit partition approach, it can select the
appropriate thread boundaries according to the control dependence and data depend-
ence, and can adjust SP, CQIP points several times, getting better speedups than
implicit partition, so speedups obtained by EE-based in Table 8 are better than HR-
based and ProCTA. But EE-based thread partition approach needs to manually select
the thread boundary, so it is basically impossible to partition all the serial irregular pro-
grams. Olden benchmarks contain not too much programs, thread boundary through
manual annotation is feasible, we can use this kind of approach which is used to obtain
better partition scheme of thread to construct TLS sample set. So, when we analyze
the experimental results, we only compare the performance of the original HR-based
approach with ProCTA, and then we will analyze the experimental results, in which we
only select several programs in the Olden benchmarks to perform analysis.

6 Conclusion and future work

6.1 Conclusion

Based on the Prophet system, this paper proposes a program characteristic-based
thread partition approach (ProCTA), and applies a machine learning method to thread
partition. According to programs’ characteristics, thread partition schemes are pre-
dicted from the sample set, and the programs are partitioned by the predicted partition
scheme. Finally, the program is executed on the Prophet simulator to verify its execu-
tion performance. The research contents and conclusions are as follows:

6.1.1 Construction of sample set

This paper proposes a method for constructing TLS sample set. TLS sample set are
composed of characteristics and partition schemes. The characteristics are extracted
from the speculative path of the control flow graph in every procedure of the program.
For the acquisition of partition schemes in TLS samples, an explicit partition method
based on expert experience is used to explicitly partition the program, and the optimal
partition scheme of every procedure in the program is calculated.

6.1.2 Thread partition based on programs’ characteristics

This paper uses the KNN classification algorithm in machine learning to obtain a better
partition scheme for every procedure, which is to be partitioned from the constructed
TLS sample set.

6.1.3 Prediction of partition scheme

This paper proposes an approach to partition programs based on predicted partition
scheme. In this paper, the nonloop partition and loop partition are carried out, respec-
tively. An evaluation model is established for the nonloops of the program, and the
nonloops are iteratively partitioned according to the evaluation model. For the loops,

7389

1 3

ProCTA: program characteristic‑based thread partition…

the nested iterations and the inner loops are, respectively, partitioned; for nested loops,
sequential spawning and nested iteration are used for thread partition; for the inner
loops, nonloop partition approach is adopted for thread partition.

6.1.4 Validation using olden benchmarks

Using Olden benchmarks, ProCTA verifies its effect on Prophet system, and its effect
is compared with the original partition results. The experimental results show that
ProCTA obtains 18.24% speedup increasement than HR-based approach on average.

6.2 Future work

In the aspect of platform, the development of TLS is gradually developing from single
machine multi-core component to distributed platform, such as parallelism of decom-
pression algorithm with thread-level speculation in [26] on Spark platform. In order to
overcome the limitation that simulated annealing algorithm (SA) is of low efficiency
as the conventional SA algorithm still runs with low parallelism on new platforms and
the computing resource cannot be fully utilized, Wang raised a speculative parallel SA
algorithm [27] based on Apache Spark to expand the algorithm’s parallelism and to
enhance its efficiency. So the future work focuses on the parallelism of algorithms (i.e.,
crawling algorithm) on Hadoop or Apache Spark.

Acknowledgements We thank all members of Henan Joint International Research Laboratory of Cyber-
space Security Applications for their great support and give our best hope to them for their collaboration.
We also thank reviewers for their careful comments and suggestions. This work is supported by National
Natural Science Foundation of China Grant Nos. 61772174 and 61370220, and Plan For Scientific Inno-
vation Talent of Henan Province Grant No. 174200510011, as well as Program for Innovative Research
Team (in Science and Technology) in University of Henan Province Grant No. 15IRTSTHN010. This
work is also supported by National Key R&D Plan under Grant No. 2016YFE0104600.

References

 1. Carlisle MC (1996) Olden: parallelizing programs with dynamic data structures on distributed-
memory machines. PhD thesis, Princeton University

 2. Chen Z, Zhao YL, Pan XY, Dong ZY, Gao B, Zhong ZW (2009) An overview of prophet. In: Inter-
national Conference on Algorithms and Architectures for Parallel Processing. Springer, pp 396–407

 3. Codrescu L, Wills DS (1999) On dynamic speculative thread partitioning and the MEM-slicing
algorithm, pp 40–46

 4. Dong Z, Zhao Y, Wei Y, Wang X, Song S (2009) Prophet: a speculative multi-threading execution
model with architectural support based on CMP. In: International Conference on Scalable Comput-
ing and Communications; Eighth International Conference on Embedded Computing. SCALCOM-
EMBEDDEDCOM’09. IEEE, pp 103–108

 5. Franklin M (1995) Multiscalar processors. ACM Sigarch Comput Archit News 23(2):414–425
 6. Grewe D, Wang Z, O’Boyle MFP (2011) A workload-aware mapping approach for data-parallel

programs. In: Proceedings of the 6th International Conference on High Performance and Embedded
Architectures and Compilers. ACM, pp 117–126

 7. Hammond L, Hubbert BA, Siu M, Prabhu MK (2000) The stanford hydra CMP. IEEE Micro
20(2):71–84

7390 Y. Li et al.

1 3

 8. Johnson TA, Eigenmann R, Vijaykumar TN (2004) Min-cut program decomposition for thread-level
speculation. In: ACM Sigplan Notices, vol 39. ACM, pp 59–70

 9. Li D-C, Lin Y-S (2006) Using virtual sample generation to build up management knowledge in the
early manufacturing stages. Eur J Oper Res 175(1):413–434

 10. Li Y, Zhao Y, Sun L, Shen M (2017) Optimizing partition thresholds in speculative multithreading.
ICIC Express Lett 11(6):1053–1061

 11. Li Y, Zhao Y, Shi J (2016) A hybrid samples generation approach in speculative multithreading. In:
2016 IEEE 18th International Conference on High Performance Computing and Communications;
IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Sci-
ence and Systems (HPCC/SmartCity/DSS). IEEE, pp 35–41

 12. Li Y, Zhao Y, Sun L, Shen M (2017) A hybrid sample generation approach in speculative multi-
threading. J Supercomput 3:1–33

 13. Li Y, Zhao Y, Qiangsheng W (2017) Gba:a graph based thread partition approach in speculative
multithreading. Concurr Comput Pract Exp 29(21):e4294

 14. Liu B, Zhao Y, Li M, Liu Y, Feng B (2012) A virtual sample generation approach for speculative
multithreading using feature sets and abstract syntax trees. In: 2012 13th International Conference
on Parallel and Distributed Computing, Applications and Technologies. IEEE, pp 39–44

 15. Liu B, Zhao Y, Li Y, Sun Y, Feng B (2014) A thread partitioning approach for speculative multi-
threading. J Supercomput 67(3):778–805

 16. Liu B, Zhao Y, Li Y, Sun Y, Feng B (2014) A thread partitioning approach for speculative multi-
threading. J Supercomput 67(3):778–805

 17. Liu W, Tuck J, Ceze L, Ahn W, Strauss K, Renau J, Torrellas J (2006) Posh: a TLS compiler that
exploits program structure. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming. ACM, pp 158–167

 18. Madriles C, García-Quiñones C, Sánchez J, Marcuello P, González A, Tullsen DM, Wang H, Shen
JP (2008) Mitosis: a speculative multithreaded processor based on precomputation slices. IEEE
Trans Parallel Distrib Syst 19(7):914–925

 19. Ohsawa T, Takagi M, Kawahara S, Matsushita S (2005) Pinot: speculative multi-threading proces-
sor architecture exploiting parallelism over a wide range of granularities. In: Proceedings of the
38th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society,
pp 81–92

 20. Prabhu MK, Olukotun K (2005) Exposing speculative thread parallelism in spec2000. In: Proceed-
ings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, pp 142–152

 21. Quinones CG, Madriles C, Sanchez J, Marcuello P, Gonzalez A, Tullsen DM (2005) Mitosis com-
piler: an infrastructure for speculative threading based on pre-computation slices. In: ACM Sigplan
Notices, vol 40. ACM, pp 269–279

 22. Quinones CG, Madriles C, Sanchez J, Marcuello P, Gonzalez A, Tullsen DM (2005) Mitosis com-
piler: an infrastructure for speculative threading based on pre-computation slices. In: ACM Sigplan
Conference on Programming Language Design & Implementation

 23. Rogers A, Carlisle MC, Reppy JH, Hendren LJ (1995) Supporting dynamic data structures on dis-
tributed-memory machines. ACM Trans Program Lang Syst 17(2):233–263

 24. Song S, Zhao Y, Feng B, Wei Y, Wang X, Zhao H (2010) Prophet+: an extended multicore simula-
tor for speculative multithreading. J Xian Jiaotong Univ 44(10):13–15

 25. Steffan JG, Colohan C, Zhai A, Mowry TC (2005) The stampede approach to thread-level specula-
tion. ACM Trans Comput Syst 23(3):253–300

 26. Wang Z, Zhao Y, Liu Y, Chen Z, Lv C, Li Y (2017) A speculative parallel decompression algorithm
on apache spark. J Supercomput 73(9):1–30

 27. Wang Z, Zhao Y, Liu Y, Lv C (2018) A speculative parallel simulated annealing algorithm based on
apache spark. Concurr Comput Pract Exp 1:e4429

 28. Wilson RP, French RS, Wilson CS, Amarasinghe SP, Anderson JM, Tjiang SWK, Liao S-W, Tseng
C-W, Hall MW, Lam MS et al (1994) SUIF: an infrastructure for research on parallelizing and opti-
mizing compilers. ACM Sigplan Notices 29(12):31–37

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	ProCTA: program characteristic-based thread partition approach
	Abstract
	1 Introduction
	2 Execution model and motivation
	2.1 Execution model
	2.2 Motivation

	3 Process of thread partition
	3.1 Expression of program’s features
	3.2 Expression of partition scheme
	3.3 Construction of prediction model

	4 Thread partition
	4.1 Cost evaluation model
	4.2 Loop partition
	4.3 Nonloop partition

	5 Experimental evaluation
	5.1 Configuration of experiment
	5.2 Experiment results
	5.3 Analysis of time complexity
	5.3.1 Time complexity of training phase
	5.3.2 Time complexity of prediction phase

	5.4 Performance comparisons and analysis

	6 Conclusion and future work
	6.1 Conclusion
	6.1.1 Construction of sample set
	6.1.2 Thread partition based on programs’ characteristics
	6.1.3 Prediction of partition scheme
	6.1.4 Validation using olden benchmarks

	6.2 Future work

	Acknowledgements
	References

