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Abstract—The World Wide Web today is growing at a phe-
nomenal rate. The crawling approach is of vital importance to
improve the efficiency of crawling the web. The existing sequent
crawling algorithms are mostly time consuming and do not
support large data well. In order to improve parallelism and ef-
ficiency of crawler on distributed network environments, based
on the software thread-level speculation technique, this paper
proposes a Speculative parallel crawler approach (ParaCA) on
Apache Spark. By analyzing the process of web crawler, the
ParaCA firstly hires a function to divide a crawling process into
several subprocesses which can be implemented independently
and then spawns a number of threads to speculatively crawl
in parallel. At last, the speculative results are merged to form
the final outcome. Comparing with the conventional parallel
approach on multicore platform, ParaCA is very efficiency and
obtains a high parallelism degree by making the best of the
resources of the cluster. Experiments show that the proposed
approach could leverage a significant speedup improvement
with compare to the traditional approach in average. In
addition, with the growing number of working nodes, the
execution time decreases gradually, and the speedup scales
linearly. The results indicate that the crawling efficiency can
be significantly enhanced by adopting this speculative parallel
algorithm.
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I. INTRODUCTION

Crawlers [1] are generally used in search engines to find
information that is of interest to users quickly and efficiently
from vast Internet information. Crawlers are also used to
collect the research data that researchers need. Literature
[2] for data acquisition needs, put forward the strategy of
fusion of different acquisition programs, the fusion strategy
can quickly and efficiently collect large amounts of data.
However, with the advent of big data and the advent of
Web 2.0, all kinds of information on multimedia social
networks have exploded. The efficiency and update speed
of single crawlers have been unable to meet the needs
of users. Using parallel technology for crawlers can ef-
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fectively improve the efficiency of crawlers [3], in a big
data environment, parallel crawlers are implemented in a
distributed architecture, because distributed crawlers are
more suitable for large data environments than stand-alone
multicore parallel crawlers. Literature [4] used distributed
web crawler framework and techniques to collect data from
social networking site Sina Weibo to monitor public opinion
and other valuable findings, overwhelming traditional web
crawlers in terms of efficiency, scalability, and cost, greatly
improving the efficiency and accuracy of data collection.
Literature [5] put forward a web crawler model of fetching
data speedily based on Hadoop distributed system in view
of a large of data, a lack of filtering and sorting. The crawler
model will transplant single-threaded or multi-threaded web
crawler into a distributed system by way of diversifying and
personalizing operations of fetching data and data storage,
so that it can improve the scalability and reliability of the
crawler.

A good approach to process large-scale data is to make use
of enormous computing power offered by modern distributed
computing platforms (or called big data platforms) like
Apache Hadoop [6] or Apache Spark [7, 8]. These popular
platforms adopt MapReduce, which is a specialization of
the split-apply-combine strategy for data analysis, as their
programming model. A standard MapReduce program is
composed by pairs of Map operation (whose job is to sorting
or filtering data) and Reduce operation (whose job is to
do summary of the result by Map operations), and a high
parallelism of MapReduce model is obtained by marshalling
the operation pairs and performing them in distributed
servers in parallel. The platforms that adopt MapReduce
model often split the input, turn the large scale problems
into sets of problems with small-scale, and then solve the
problem sets in a parallel way. At present, many resource-
intensive algorithms are successfully implemented to these
big data platforms and achieve a better performance [9—11],
and it is a good way to enhance conventional algorithms/



efficiency. However, there exists a problem that the inherent
dependence in the conventional crawling approach affects
the effect of parallelism. So, designing and implementing
a parallel crawling approach with high efficiency on Big
Data platforms becomes very essential. By this method, the
crawling web data can be split into some data blocks and
then captured in parallel. After crawling the webs, the results
are validated at a certain point, the proper results would
be submitted and the improper ones would be recalculated.
Even though false parallelization may occur, it is still a good
method to leverage the the crawling performance.

The remaining parts of this paper are organized as fol-
lows:we first briefly describe the execution model and relat-
ed work in section II; we present the framework of ParaCA
in section III; based on the framework, we present the
implementation of ParaCA in section IV; section V presents
the evaluation of ParaCA; Then experimental process and
results are shown in section VI. Finally, conclusion is present
in section VIIL

II. EXECUTION MODEL AND RELATED WORK

This section mainly presents the execution model and
related works. The study object in the execution model
is crawling approach [12], which is the most popular and
has been intensively applied. In addition, as the measure to
handle the dependence in crawling approach, the speculative
multithreading is also introduced. Finally, Apache Spark
is chosen as the computing platform to implement the
speculative parallel algorithm for its powerful computation
ability.

A. Apache Spark Parallel Computing Platform

In order to decompress large-scale data in parallel with
STLS technique, the Apache Spark [13] is chosen as the
computing platform. Apache Spark is a distributed com-
puting platform developed at the Berkeley AMPLab [14].
Different from other computing clusters with multiprocess
model like Apache Hadoop, Apache Spark adopts the mul-
tithreading model, which makes Apache Spark provide a
good support on STLS technique. Apache Spark is a classic
master/workers mode in which the master distributes tasks to
workers, while workers are responsible for executing tasks.
Fig. 1 is a demonstration on Spark multithreading model.

B. Related Works

In order to obtain the micro-blogging data quickly, Lit-
erature [15] extended the parallel framework based on the
single-process crawler and realized parallel data capture
function based on MPI. The parallel crawler has a good
speedup ratio and can quickly obtain data, and these data
with real-time and accuracy. Literature [16] proposed a
Kademlia-based fully distributed crawler clustering method.
According to the XOR characteristics of Kademlia and
the available resources of nodes, a complete distribution

with task allocation, exception handling, node join and exit
processing, and a crawler cluster model with load balancing
was built. Literature [16] studied a distributed Hadoop-based
crawler technology and implemented parallel processing
of reptiles on the basis of the distributed crawler. The
slave nodes not only process all the sub-tasks assigned by
the master node in parallel among nodes, but also Multi-
threaded internal tasks are also processed internally from
within the node.

Regarding the refresh strategy of incremental crawler
pages, Zhou et al. [15] used sampling samples to determine
the refresh time. Since the update frequency of different
sites is not the same, you can use this difference for coarse-
grained packet sampling, you can also use the characteristics
of web page changes for the fine-grained packet sampling.
Schonfeld et al. [17] used the last modification time of the
web pages in the site metadata to select the pages to be
refreshed. The web server generally stores all the URLs
in the server and the last modification time as metadata.
Literature [18, 19] proposed a page refresh strategy based on
Poisson distribution as a page refresh method for incremental
crawler. A large number of studies have proved that webpage
changes generally follow the Poisson process, and according
to this rule, a refresh model can be established for webpage
changes to predict the next update time of the webpage.
C Olston et al. [20] proposed a refresh strategy based on
information cycle, which combined the sampling based on
webpage features with such periodic changes conforming to
Poisson distribution, and dynamically adjusted the refreshing
cycle of web pages according to the upper and lower utility
value boundaries. Literature [15] improved Super-shingle
algorithm based on C Olston et al., making it suitable for
video resource crawlers. Since C Olston et al. introduced
the method of estimating utility values without any practical
significance, a practical and effective method of estimating
utility thresholds was given in [20]. Compared with the
previous border-based methods, this utility-based method
better balances freshness and refresh costs, achieving better
freshness at a lower cost. Pavai G. et al. [21] proposed an
incremental crawler based on probabilistic method to deal
with the dynamic changes of surface web pages. The method
of predicting the probability of web page variation based
on Bayesian theory was modified to deal with deep web
dynamic changes. K Gupta et al [22] proposed an accuracy-
aware crawling techniques for cloud crawler that allowed
local data to be re-crawled in a resource / budget-constrained
environment to retrieve the maximum amount of information
with high accuracy.

In summary, the existing crawler technology has not been
in a good balance of efficiency, refresh cost and freshness, so
this paper presents a distributed parallel crawler to improve
the efficiency of crawlers, and proposes an incremental
update algorithm based on time-aware to get better freshness
at a lower refresh cost, and combines the two to better
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Figure 1.

balance efficiency, refresh costs and freshness.

III. SPARK-BASED DISTRIBUTED PARALLEL CRAWLER
FRAMEWORK

The distributed crawler system used in this paper adopts
a master-slave structure. That is, one master node controls
all slave nodes to perform crawl tasks. The master node is
responsible for allocating tasks and ensures load balancing of
all slave nodes in the cluster. The used allocation algorithm
is to calculate the hash value of the host corresponding to
each URL, and then divide the URL of the same host into a
partition. The purpose of this is to have the URL of the same
host crawled on one machine. Distributed crawlers can be
viewed as a combination of multiple centralized crawler sys-
tems. Each slave node is equivalent to a centralized crawler
system. These centralized crawler systems are controlled and
managed by a master node in a distributed crawler system.

From the diagram of distributed parallel crawler frame-
work in Fig.2, we can see that the main part of the
framework includes master node for task generation, task
allocation and scheduling, and the master node’s control
and management of the entire system (such as the depth
of crawler, configuration of update time, system startup and
stop etc.) ; The crawler cluster is responsible for parallel
downloading pages; the Map/Reduce function module is
responsible for parsing pages, optimizing links, and web
page updates; Message middleware is responsible for com-
munication and collaboration between master node, crawler
nodes, and clusters (e.g. log management, data exchange

The Multithreading Model of Apache Spark

and maintenance between clusters, etc.); and Distributed File
System (HDFS) for data storage.

A. Parallel Crawling

To process large-scale data stored in HDFS in parallel,
Hadoop offers a parallel computing framework called Map
/ Reduce. Spark is founded on Hadoop. The framework
effectively manages and schedules nodes in the entire cluster
to complete the programs' parallel execution and data pro-
cessing and allows every slave node to localize calculation
data on the local node as much as possible.

As can be seen from Fig.2, the core of the entire
crawler system can be divided into three modules, including
download module, parsing module and optimization module.
Every module is an independent function module, and every
module corresponds to a Map / Reduce process.

e The download module can download web pages in
parallel. Specific download is completed in the Reduce
phase, and multi-threaded download is used.

« Parsing module can analyze downloaded pages in par-
allel, extract the link out. The module not only needs
a Map stage to complete the goal, but also limits the
type of links to prevent the extracted links to other sites
through the rules.

o The optimization module can optimize the collection of
links in parallel and filter out duplicate links.

It can be seen that the parallelism of the Web crawler
system is achieved through these three parallelizable mod-
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ules, which are essentially implemented through the parallel
computing framework of Map / Reduce.

At the beginning of the Map / Reduce task, the input data
is split into several slices, with a default of 64 MB for every
slice. Every piece is processed by a Map process, a crawler
can open multiple Map processes at the same time. After the
output of all Map is combined, according to the partitioning
algorithm, the URL of the same site is assigned to a partition,
so that the URL of the same site can be crawled on the
same machine, the tasks of every partition are processed by
a Reduce process, several partitions have several Reduces
which perform parallel processing, while a crawler can also
open multiple Reduce processes. Finally, the results of the
parallel execution are saved to HDFS.

Fig.3 shows a parallel crawler framework diagram with
Spark, in which three critical modules are URL_Download(),
URL_Parser(), URL_Optimization(). "Seeds_File.txt' is the
source of URLs, which are used to the process of initial
crawler. From the file of ~Seeds File.txt', one new URL
is extracted and then used to judge whether its length
is larger than O or not. If the length of extracted URL
is greater than 0O, the next step is to download its web
page. The downloaded pages need to be parsed, includ-
ing URL_Parser and Content_Parser. The parsed contents
need to be optimized, so to filter the improper URLs. sc
= SparkContext(appName="URLDownload )" and ~urls =
sc.parallelize(new_urls)  are used to realize the paralleliza-
tion of download process. After this process, ~url_html_list’
is generated and used for parsing URLSs and contents.

Fig.4 shows a parallel download diagram with Spark, in
which three critical processes are included, i.e. judgement
of urls, using SparkContext to get sc, using parallelize() to
realize parallelization.

Distributed Parallel Crawler Framework Diagram

Fig.5 presents a parallel parser diagram with Spark,
in which three critical processes are also included, i.e.
URL_download, using SparkContext to get sc, using par-
allelize() to realize parallelization of url_html_list.

Similar to Fig.4 and Fig.5, Fig.6 shows the process
of parallelizing URL_optimization, including URL_parser,
obtaining sc, using parallelize(url_urls_list) to realize the
parallelization. The function collect() is used to obtain new
url list, and the function distinct_urls is used to remove the
repetitive urls.

The specific processes of parallelizing crawling can be
reduced to be:
(1) Collecting a set of seeds. First, for each crawler target
to collect a URL seed as the entrance link to download
data, and then the files of seeds from the local file system
upload to input folder of hadoop cluster distributed file
system, input folder always holds the URL to be crawled
by the current layer. At the same time, the setting layer
which has been crawled is 0.
(2) Judge whether the list to be fetched in the input folder
is empty. If yes, skipping to (7); otherwise, executing (3).
(3) Download pages in parallel. And save the original page
to the html folder in HDFS, html folder holds raw web
pages of every layer.
(4) Parse pages in parallel. Extract the eligible links from
the crawled pages in the html folder and save the results to
the output folder in HDFS. The output folder always stores
the outgoing links that are parsed at the current level.
(5) Optimize outgoing links in parallel. Filter out the
crawled URLs from all the parsed URLs in the output
folder, and save the optimized results to input folder in
HDES for the next crawl.
(6) Judge whether the number of crawled layers is less than
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the parameter depth. If yes, ~crawled layers  increase by 1,
return (2); otherwise enter (7).

(7) Combine the pages crawled by every layer and remove
the duplicate crawled pages. The results are still stored in
the html folder.

(8) According to the webpage crawling plan, these pages
with the crawling task at the moment are added to the
crawling list.

(9) Further parse webpages content. Analyze the content of
the webpages in parallel, and then parse out the required
attribute information from the merged and duplicated
webpages. The attribute information required by the system
includes title, publishing time, copyright owner, text, and
video source.

(10)According to the attribute information which is parsed
out, further screening is done. If the attribute information
satisfies the user rules, such as the publication date in
the last 7 days and the content of the text related to the
scientific and technical information. It will upload the
attribute information that meets the conditions, including
the URLs, to the server database. Otherwise, give up.

B. Parallel algorithm based Map/Reduce

Definition 1: Crawler = {c1, ¢, ..., ¢, }: represents a
collection of crawler nodes in a cluster. c; represents the iy,
crawler node. The maximum number of Map processes and
the maximum number of Reduce processes which a reptile

Parallel Crawler Framework Diagram with Spark
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Figure 6. Parallel Optimization with Spark

node can open are determined by the number of processors
on the node.

Definition 2:{splity, splity ,..., split,,_1}: represents a
collection of file slices. A slice is handled by a Map process.
Definition 3:{party, part; ,..., party_}: represents a col-
lection of file partitions. A partition is handled by a Reduce
process.

Assuming m = 2n, k = n, then parallel algorithm based
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Map/Reduce is shown in Algorithm 1.

In Table I, a parallel algorithm (Algorithm 1) based
Map/Reduce is specifically introduced. Firstly, an input-file
is splitted into m-1 parts; Then, send an adjacent slices
(split_k, split_k+1, where k%2==0) to c_k, and split k ~
split_k+1 are all defined above; Next, map processes are
performed to process these adjacent slices, and combine
all map output to Inter-results; Then, use the partitioner to
partition Inter-results to part_0 ~ part_k — 1 (k€N); Next,
send part_i to c_i + 1(ieN), and open a process part_j =
partition_j (JEN)

Parallel Parser with Spark

IV. EXPERIMENT AND ANALYSIS

A. Experiment Configuration

This section will present a performance evaluation of
ParaCA. Table VI shows the specific configuration of ex-
periment environment.

B. Analysis of Experimental Results

Fig.6 shows a time comparison between sequential crawl-
ing and parallel crawling. The left green line represents
the time of sequential crawling while the right green line
represents the time of parallel crawling.



Table 1
ALGORITHM 1:PARALLEL ALGORITHM BASED MAP/REDUCE

Algorithm 1:Parallel algorithm based Map/Reduce

Input: Input-File
Output: Output-File

: Begin

: Split Input-File into m slices =>{splii0, splitl, ..., splitm-1};

: send split0, split] to ¢l , open two Map processes to process this two slices;

: and send split2, split3 to c2 , open two Map processes to process this two slices;

and ....;

: and send splitm-2, splitm-1 to cn , open two Map processes to process this two slices;

: Combine all Map output => Inter-results;

: partitioner(Inter-results) => {part0, partl, ..., partk-1};

: send partO to ¢l , open a Reduce process to process part) => partition_0;

: and send partl to c2, open a Reduce process to process partl => partition_I;

cand ....;

: and send partk-1 to cn , open a Reduce process to process partk-1 => partition_n-1 ;
. Output-File = {partition_0.partition_1,....partition_n-1};

: End

Table 11
ALGORITHM 1:PARALLEL DOWNLOAD OF URL BASED SPARK

Algorithm 2:Parallel Download of URL based Spark

def urls_download(urls):

sc¢ = SparkContext(appName="URLDownload” );

new_urls = sc.parallelize(urls);

url_htmi_list = new_urls flatMap(lambda x: x.split(’,’)).map(lambda x: (X, get_htmli(X)));
output = url_html_list.collect();

sc.stop();

print(/urls_download: %s % len(output));

return output;

Table IIT
ALGORITHM 1:PARALLEL PARSER OF URL BASED SPARK

Algorithm 3:Parallel Parser of URL based Spark

def url_parser(url_html_list):

sc = SparkContext(appName="URLParser’ );

url_htmls = sc.parallelize(url_html_list);

createCombiner = (lambda el: get_newurls(el));

mergeVal = (lambda aggregated, el: aggregated + get_newurls(el));
mergeComb = (lambda aggl, agg2: aggl + agg2);

new_urlss = url_htmls.combineByKey(createCombiner, mergeVal, mergeComb);
output = new_urlss.collect(); sc.stop();

print(lurl_parser: %s %s’ len(output), output);

return output;

if_name_ == ”_main_” :

sc = SparkContext(appName="LoadSeedsFile” );

seeds_file = " file:///home/hadoop/CyCrawler/News_CyCrawler/Spider/seeds-file.txt” ;
lines = sc.textFile(seeds._file);

root_urls = lines.flatMap(lambda x: x.split(’ *)).distinct(),

urls = root_urls.collect();

sc.stop();

url_html_list = urls_download(urls);

url_parser(url_html_list),




Table IV
ALGORITHM 4:PARALLEL CONTENT PARSER BASED SPARK

Algorithm 4:Parallel Content Parser based Spark

def content_parser(url_html_list):

sc = SparkContext(appName="ContentParser” );

url_htmls = sc.parallelize(url_html_list);

createCombiner = (lambda el: get_content(el));

mergeVal = (lambda aggregated, el: aggregated + get_content(el));
mergeComb = (lambda aggl, agg2: aggl + agg2);

new_data = url_htmls.combineByKey(createCombiner, mergeVal, mergeComb);
output = new_data.collect();

sc.stop();

return output,

if _name_ =="_main_":

old_urls = [J;

sc¢ = SparkContext(appName="LoadSeedsFile");

seeds_file = " file:///home/hadoop/CyCrawler/News_CyCrawler/Spider/video-file.txt” ;
lines = sc.textFile(seeds_file);

root_urls = lines.flatMap(lambda x: x.split(’ *)).distinct();

urls = root_urls.collect();

print(urls);

sc.stop();

for url in urls:

old_urls.append(url),

print(’======");

print(urls);

url_html_list = urls_download(urls);
content_parser(url_html_list);

Table V
ALGORITHM 5:PARALLEL OPTIMIZATION OF URL BASED SPARK

Algorithm 5:Parallel Optimization of URL based Spark

def distinct_urls(links, old_urls):

new_urls = [];

num = 0;

for j in range(len(links)):

if links[j] = None:

num = num + len(links[j]);

for url in links[j]:

if url not in old_urls:

if len(url)>0:

new_urls.append(url);

print(/before url_optimi: %s "9 num);

return list(set(new_urls));

def url_optimi(url_urls_list, old_urls):

s¢ = SparkContext(appName="URLOptimization” );
url_urls_list2 = sc.parallelize(url_urls_list);
new_urls_list = url_urls_list2.values();

links = new_urls_list.collect();

sc.stop();

urls = distinct_urls(links, old_urls);

print(/after url_optimi: %s ° % len(urls), urls);
return urls;

if _name_== 7 _main_”:

old_urls = [];

s¢ = SparkContext(appName="LoadSeedsFile" );
seeds_file =~ file:///home/hadoop/CyCrawler/News_CyCrawler/Spider/seeds-file.txt” ;
lines = sc.textFile(seeds._file);

root_urls = lines.flatMap(lambda x: x.split(’ *)).distinct(),
urls = root_urls.collect();

print(urls);

sc.stop();

for url in urls:

old_urls.append(url);

url_html_list = urls_download(urls);
url_newurls_list = url_parser(url_html_list);
url_optimi(url_newurls_list, old_urls);




Table VI
CONFIGURATION OF EXPERIMENT ENVIRONMENT

Item Configuration

Servers

Lenovo System x3850 x6 (2 sets), Lenovo SR590 (2 sets), IBM System X3500 M4,

Number of Cores 120

Operation System | CentOS, Ubuntu

Parallel Platform Haddop2.7.0, Spark2.3.0

Time Time

1 2

Figure 7. Comparison of Crawling Time

Number

® Number
1200

1000
800
600
400

200

I

1 2

Figure 8. Comparison of Crawling Websites

Fig.8 shows a comparison of crawling websites between
sequential crawling and parallel crawling. The left orange
line represents the number of sequential crawling websites
while the rigth orange line represents the number of parallel
crawling websites.
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Fig.9 shows the changing of core number.
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