
Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

1-4244-0165-8/06/$20.00 ©2006 IEEE.

Dynamic Capability Delegation Model for MAS, Architecture and Protocols in
CSCW Environment

Zhiyong Zhang1, Jiexin Pu1, Shaozhong Zhang2

1 Electron.Inf.Eng.Coll., Henan University of Science & Technology, Luoyang, P.R.China
zhangzy@mail.haust.edu.cn; pjx@mail.haust.edu.cn

2 Electron.Eng.Dept., Zhejiang Wanli College, Ningbo, P.R. China
dlut_z88@163.com

Abstract

The purpose of delegation is improving resource share
and realizing collaboration in CSCW environment.
Nowadays agent-based collaboration in Multi-Agent
System lacks of delegation model including formalization
and relative mechanisms, especially for variable dynamic
collaboration scene. Based on a new proposed concept
Agent Collaboration Scene (abbr. ACS), this paper
specifies a dynamic agent-based capability delegation
model supporting temporal characters and constraint
rules, called by Capability Delegation Model for Multi-
Agent System (abbr. CDM for MAS), as well as
representing hybrid architecture and key protocol
functions related to delegation. The model solves the
issue of agent’s capability oneness and inflexibility, and
realizes dynamic capabilities delegation between agents
in an actual application Agent-Based Text Information
Retrieval System, enhancing agent cooperation efficiency
and security.

Keywords: CSCW, Multi-Agent System, Agent
Collaboration Scene, Capability Delegation, CDM for
MAS

1. Introduction 1

Nowadays the theory and technology of Multi-Agent
System (abbr. MAS) are hot topics in Distributed
Artificial Intelligent research. Multi-agent collaboration
research focuses on the architecture and how to realize
dynamic schedule, avoid collision, harmonize each other
and cooperative work, and assure higher efficiency,
security and stability of MAS. However agent’s capability
is single or stable in traditional MAS, so it is not fit for
dynamic, complexity, and uncertainty of MAS [1].
Accordingly, an incompact federal framework was
presented in Literature [2], achieving distributed

1 This paper is sponsored by National Nature Science Foundation of

China (Grant No.60475021) and Henan Province Natural Science
Fundamental Research Fund (Grant No. 200410464004).

problem’s computing; Andrea Omicmi introduced a role-
based multi-agent cooperation model, architecture and
related functions, but it lacked of model formalism [3];
Lai also created a role-based multi-agent workflow model
for WFMS, and represented it using BNF extensions [4].
Because these above mentioned models do not deal with
collaboration management, especially for delegation
technology and related mechanisms, it is not fine-grained.

Summarily speaking, as the essential component and
key technology of fulfilling multi-agent collaboration in
CSCW environment, now there is little research and
application on delegation. But some related research has
progressed, for example, some issues and methods of
role-based collaboration were represented by Haibin Zhu,
such as role assignment and migration, role coordination,
role collision and so on [5]. Anand Tripathi realized role
model and domain policy that meet dynamic security, but
a formal security model was not specified [6]. A role-
based access control model for CSCW and a role-based
multi-agent management model were formally defined,
and it focused on basic component and general
authorization rules, not dealing with delegation
mechanism [7, 8, 9]. According to dynamic, complex,
variable environment of MAS, this paper introduces role-
based policy and ACS, and specifies a dynamic
delegation model, architecture and key protocols of
agent’s capability delegation, realizing flexible capability
delegation in an application.

2. Agent and Delegation Fundamental
Theories

2.1. Agent Characteristics and Multi-Agent
Collaboration

Intelligent agent has some main characteristics of
autonomy, social ability, reactivity and benevolence.
These embody that agent could apperceive exoteric
environment and react, further affect on real world. The
capability of collaborative computing in MAS exceeds

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

single agent, so it is a main reason of designing and
realizing MAS. Compared with single agent, MAS has
some features as follows: every agent only possesses
partial system information and computing capability, so
its viewpoint is limited. Here agent can not control a
whole system, data are dispersive or distributed, and
computing procedure is asynchronous, concurrent or
parallel. But the structure of MAS could be pure
centralized, whole distributed or hybrid form [1]. Because
MAS is complicated and dynamic, its collaboration
management is crucial to multi-agent harmony,
negotiation, cooperative work in agent society.

2.2. Delegation Model and Main Features

The basic idea of delegation is that active entity (user,
process, agent, et. al.,) in application could grant some
own permissions or roles to others, which can carry out
some privileges and functions on behave of the former.
The concepts related to delegation have delegator,
delegated role or permission and delegatee.

Delegation has some important features as follows:
1. Delegation Granularity: The unit of Delegation has

three kinds as follow: Permission-based thin granularity
[9], role-based medium granularity [10, 11], permission
and role -based fat granularity proposed by Zhang [12,
13]. Thin granularity means that user could delegate the
partial permissions of a role to delegtee, not just whole
role. So granularity is depressed, and it meets the
principle of least privilege, but brings about some non-
integrity role led to authorization complexity .For medium
granularity, delegtor only could delegate role as a whole,
thus delegtee would acquires entire permissions of role.
Apparently, it sacrifices the principle of least privilege at
some degrees to eliminating non-integrity role. Fat
granularity allow user to delegate own permission or role
discretionarily, which is flexible compared with above
two granularities besides of complex realization. With
regard to delegation unit, it should be chosen according to
applied system.

2. Delegation Step: It is subdivided into single-step
delegation and multi-steps delegation. The former is that
delegatee could not delegate role or permission to others
further; the latter allows delegatee to grant further, but in
the condition revoke is more complicated.

3. Delegation Revoking: The contrary operation of
delegation is revoking which means that delegated roles
or permissions are called off. Revoking mainly includes
the following features, such as cascading revoke, non-
cascading revoke, grant-independent revoke, grant-
dependent revoke, system automatic revoke and user
revoke.

3. CDM for MAS and Formal Definitions
3.1. Basic Ideas

CDM for MAS is a reference model with delegation
feature for multi-agent cooperation, it introduces two new
concepts of agent’s role and dynamic ACS on the basis of
role-based policy. The policy simplifies multi-agent
society management, agent not only could active new role,
further acquire other cooperative abilities, but also could
delegate its capability or role to another agent, improving
information sharing and cooperative work. Realizing
collaboration constraint in ACS also ensures MAS
security. Here delegated capabilities or roles compose a
set called as Delegated Capability/Role Set (abbr.
DCRS).The model contains some basic components, such
as agent, role, DCRS, capability, task, activity, society
and constraint, as Figure1.

Figure 1. CDM for MAS

3.2. Main Components Formalization

The following is a list of CDM for MAS components:
Ag, R, AR, DCRS, S, C, Rs, P, CC, AS, T, A are
respectively defined as sets of agent, role, active role,
delegated capability/role set, states, capability, resource,
privilege, collaboration constraint, agent society, task,
activity.
Definition 3.2.1 (Agent): Agent is an entity that has
knowledge, faith, intention and expectation. It could
apperceive the environment change independently, and
make action, further effect environment. So it is a subject
with autonomic and social properties. Agent is presented
as a seven tuple that consists of AID, sensor, processor,
communicator, aim, effector, collaboration scene.

∀ ag (ag ∈ Ag) ag = { aid, sensor, processor,
communication, aim ,effector, acs}
Definition 3.2.2(Capability): Capability is a privilege,
permission or condition accessing resource for a task. It
could be not only actual read, write a file, but also
abstract ability like delegation, revocation, etc. Every
capability must and only accomplish an activity. Here

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

defines a function “doactivity()” to denote a one–to-one
relation between capability and activity.

C ⊆ RO×P
doactivity (c)：C → A

Definition 3.2.3(Role): Role is an abstract entity who has
definite responsibilities and capabilities in an organization
or society, agent who acts as a role becomes an instance
of the role. Besides role is looked upon as a set of agents,
it is also a finite set of capabilities. The relation between
role and agent is a many-to-many relation.

∀ r (r∈R) r = {ag1, ag2,… agn | agi ∈Ag}
∀ r (r∈R) r = {c1,c2…cm | ci ∈C}

Definition 3.2.4(Society): Society is an organization
where some agents or roles cooperate for a goal or task.

∀ s (s∈S) s = {ag1, ag2,… agn | agi ∈Ag}
∀ s (s∈S) s = {r1, r2,… rn | ri ∈R}

Definition 3.2.5(Agent Collaboration Scene): ACS is a
dynamic agent cooperative environment that is
collaboration context. It includes cooperation time, space,
partner, shared resource and attributes that are defined in
following Section 3.5.

∀ acs (acs∈ACS) acs = {time, space, parter, resource,
attributes}
Definition 3.2.6(Role Assignment): According to
cooperative task, agent is assigned to proper roles, and
has some related capabilities. RA is a relation of many to
many between agent and role.

RA ⊆ Ag×R
R(ag)={r | role of assigning a agent ag, ag∈Ag}

Definition 3.2.7(Active Role): It is a role that is activated
by Agent in a given ACS, AR(acs) denotes active role(s)
in ACS. Agent work through a mapping function
“agentwork()” between Ag and AR.

∀ acs (acs∈ACS) (ar(acs)∈R(ag))
agentwork (ag,ar):Ag → AR

Definition 3.2.8(Task & Activity): Agent roles'
collaboration goal is called as task, the every step of task
is called activity. Activity has dynamic and atomic
characteristic, and is basic unit of task.

∀ t(t∈T)t={a1,a2…an│ai∈A}
Property 3.2.1(Agent Society-Task): Every agent
society only has a task. Predication “t(s)” denotes the task
of society s.
∀ s (s∈S) ∋ t1 ，t2 (t1 ，t2∈T) t1(s) ∧ t2(s) → t1 = t2

Definition 3.2.9(Capability Assignment): CA denote
assigning appropriate capabilities to role based on
responsibility or task of role, and it is many-to-many
between role and capability, written as a two tuple CA(r,
c).

CA ⊆ R×C
CA(r, c) = {ci | capability assigned to a role r, r∈R,

c∈C}

Definition 3.2.10(Delegated Capabilities/Role Set):
DCRS is a set of delegated capabilities or (and) roles.
Because role is treated as capabilities set, the granularity
of DCRS is capability.

DCRS = {c1, c2, …cm, r1,r2,…rn│c∈C, r∈R }, namely,
DCRS ⊆ R∪C
Definition 3.2.11(Capability Delegation): Delegation
relation is a six tuple（Ag1, Ag2, DCRS, DTL, CC,
ACS）,where Ag1 is delegator, Ag2 is delegtee, DTL is
the limitation set of delegation time, and CC is the
conditions set of capability delegation constraints. The
relation is that agent Ag1 could delegate DCRS to another
agent Ag2, thereby Ag2 acquires whole explicit and
implicit capabilities of DCRS, where delegation must
meet prerequisite conditions of CC in an ACS.
Property 3.2.2(Cascading Delegation Revoke): When
original user revokes delegation or ST exceeds DTL, the
whole roles and capabilities of DCRS which is multi-
steply delegated will be revoked cascadely.
Property 3.2.3(Grant-Independent Revoke): Every
delegator in the delegation path could revoke delegation,
not only original delegtor has right to revoke.
Property 3.2.4(System Imperative Revoke): When
system clock exceeds to DTL of DCRS or entities’
attributes changes, MAS system automatically revokes
delegation including all explicit and implicit capabilities.

3.3. Delegation Temporal Properties

Definition 3.3.1(States Set): The states set of DCRS
S={init, invoke, sleep, expire}, init is beginning-state,
invoke is active-state, sleep is sleepy-state, expire is
exiting-state.
Definition 3.3.2(Delegation Time Limit):DCRS has the
property of time limitation, DTL={x ︳

x=[τ bi,τ ei](i=1,2…n)}, where τ bi is begin-time , and
τ ei is end-time.
Definition 3.3.3(State Transitions):ST is system time,
∀ i(i ∈ N) ST ∉ [τ bi, τ ei] ∧ ST< τ b1 → S=init； ∋ i
(i ∈ N)ST ∈ [τ bi, τ ei] → S=invoke ；
∀ i(i ∈ N)ST ∉ [τ bi, τ ei] ∧ (ST> τ b1) ∧ (ST< τ en)
→ S=sleep ； ∀ i(i ∈ N)ST ∉ [τ bi, τ ei]
∧ ST>τ en → S=expire.
Property 3.3.1(Activity Temporal Order): The relation
of activities is synchronization or concurrency. Between
every two activities exits steady time order that meet
partial order relation, denoted by "□".

∀ t,ai,aj(t∈T,ai,aj∈A)(ai∈ t ∧ aj∈ t → ai□aj)
∀ t,ai,aj,ak(t∈T,ai,aj,ak ∈A)(ai□aj ∧ aj□ak → ai□ak)

Property 3.3.2(DLC Run-Order): Delegated
Capabilities (abbr. DLC) are executed in series or

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

concurrently, and their relation is partial order, denoted
by "≧DC".

∀ t,dlci,dlcj,dlck(t ∈ T,dlci,dlcj,dlck ∈ t)(dlci≧DC
dlcj ∧ dlcj≧DC dlck → dlci≧DC dlck)
Property 3.3.3(Activity-DC Temporal Order
Consistency): Activity and DC is consistent in time order
owing to their one to one mapping relation. Predication
“own (ai,dlcj)” denotes activity ai owns delegated
capability dlcj.

∀ t,ai,aj,dlci,dlcj(ai,aj∈ t)(own(ai,dlci) ∧ own(aj,dlcj) ∧ a
i□aj ↔ dlci≧DC dlcj

3.4. Delegation Constraint Rules

Definition 3.4.1(Non-Delegated Capability/ Role):
NDCR is a set of whole capability and roles that are not
delegated to others.

NDCR={ c1,c2,…ci, r1,r2,…rk}
Definition 3.4.2(Delegation Collision Capability): Two
capabilities ci and cj are delegation collision capabilities,
if they are not delegated to a agent agk at the same time,
we denote it by collc(ci, cj, agk).
Definition 3.4.3(Delegation Collision Role): Two roles
ri and rj are delegation collision roles, if they are not
delegated to a agent agk at the same time, we denote it by
collr(ri, rj, agk).
Constraint Rule 3.4.1(Non-Collision Delegation
Constraint): The elements of NDCR can not be
delegated.

∀ x(x∈NDCR) → (x∉DCRS)
Constraint Rule 3.4.2(DCRS Non-Collision
Constraint): Every two capabilities or roles do not exist
delegation collision in DCRS set.

∀ ci,cj (ci∈DCRS, cj∈DCRS, agk∈Ag) collc(ci, cj,
agk)=F

∀ ri,rj (ri ∈ DCRS, rj ∈ DCRS, agk ∈ Ag) collr(ri, rj,
agk)=F
Definition 3.4.4(Delegation Depth and Cardinality):
Delegation Depth d is a natural number about cascading
delegation degree of capability ci. It is called as single-
step delegation if d=1, and called as multi-step delegation
if d>1.Delegation cardinality is also a natural number
about delegated agents' number of capability ci.

Constraint Rule 3.4.3(Multi-Steps Delegation
Constraint): Delegation depth and cardinality of DCRS
lie on minimum delegation depth and cardinality of all
roles and capability in DCRS.

∀ ci (ci∈DCRS) dDCRS<dci ∧ dDCRS<dri
∀ ri (ri∈DCRS) nDCRS<ri ∧ nDCRS<nri

Property 3.4.1(Multi-Steps Delegation): DCRS multi-
steps delegation is a partial order relation with reflexive,
antisymmetric, transitive properties.

3.5. Delegation Dynamic Features

Definition 3.5.1(Attributes): Attribute represents
characters of system entities including delegator Agent,
delegatee and resource, respectively defined as
Dlgtor_Attr, Dlgtee_Attr and Reso_Attr. Usual main
attributes of Dlgtor_Attr and Dlgtee_Attr have identity,
role, security level, capability scope; Reso_Attr includes
access permission, share property and access cardinality.
Attributes’ change in ACS directly influences delegation
constraint rules, delegation verification and access control.
Definition 3.5.2(Delegation Verification): After
delegator receives the delegation request of delegate,
system should make delegation verification according to
relative attributes and ACS.DV usually acts on client.
Here defines two operations related to delegation rules:
rule consistency operation ▲, contrary operation ▼, and
presents the definition using BNF extension.

<DeleVerification>::=“Dlg_Veri”
 <input>::=<Dlgtor><Capability><ACS Contexts>
 <output>::=<Allow>|<Reject>

{
 <Client>: if Dlgtor_Attr && Dlgtee_Attr && Reso_Attr &&
Capability▲ Constraint Rules && ACS then
 {send_result(Allow);
 Delegation;}
 else
 send_result(Reject)
 end; }

End;

Definition 3.5.3(Capability Access Decision): When
delegatee begin to accesses resource, system must make
decision on capability of resource access based on
Delegation Certificate and ACS, and send decision result
to delegatee.

<AccessDecision>::=“Access_Deci”
<input>::=<Dlgtee><Resource><Dlgtee_Attr><ACSContexts><Cap
ability>
 <output>::=<Allow>|<Reject>

{
 <Server>: if Dlgtor_Attr && Dlgtee_Attr && Reso_Attr &&
Capability ▲ Authorization && ACS then
 {send_result(Allow);
 Access Resource;}
 else
 send_result(Reject)
 end; }

End;

Definition 3.5.4 (Delegation Validity Test): In the
procedure of delegatee access to resource through DLC,
system and delegator should test the validity of DLC
periodically because of some change of attributes and
ACS. If variable attributes do not fit for constraint rules
or ACS, system or delegator will automatically revoke
delegated capability.

<AccessTest>::=“Access_Test”

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

<input>::=<Dlgtee><resource><TimePeriod><Cap-
ability>
 <output>::=<Record>|<Revoke>

{ for(;;TimePeriod)
 <Server>/<Client>: if Dlgtor_Attr && Dlgtee_Attr &&
Reso_Attr && Capability ▲Constraint Rules && ACS then
 Record this test;
 else
 Revoke (Capability);
 Record this test;
 end; }

End;

4. Hybrid Architecture and Key Protocols

The architecture of CDM for MAS adopts Client-
Delegation Reference Monitor(C-DRM) and Server-
Delegation Reference Monitor(S-DRM) hybrid pattern as
Figure 2.Client runs C-DRM that is Trusted Computing
Base of delegation verification and test, it also stored a
copy of capability assignment. C-DRM verifies
delegation according to relative rules, then subscribes
Delegation Certificate (abbr. DC) and sents it to
Delegation Database as audited information, so fulfills
delegation process. At last, C-DRM replies to delegate.
Resource sever adopts S-DRM that is the TCB of access
control and test. According to entities’ attributes, S-DRM
and C-DRM test DLC validity periodically. If delegation
has invalidation, server pause the capability promptly and
C-DRM revokes delegation. Delegatee could access to
shared resource acting on delegated capability through
submitting DC and ACS context. As complementary
function, audit is in charge of track of agent’s access and
DC validity.

Because resource storing patterns could be centralized,
federal or distributed frame, S-DRM is also the same
configuration. Here only gives common centralized
shared resource architecture.

Figure 2. Hybrid architecture of centralized resource

The key protocols and relative semantics of this model
are illustrated in Table1, for example, delegation request
function DeleRequest; delegation verification function
DeleVerify; delegation answer function DeleReply;

delegation function Delegation; revoke function Revoke;
these functions belong to C-DRM; Test function
DeleValiTest acts on C-DRM and S-DRM. Besides,
access decision function AccessDecision belongs to S-
DRM.

Table 1. Key protocols functions

Main

Entities
Key Protocols Relative Semantics

Dlgtee,
C-DRM

Dlgtor,
C-DRM

Dlgtor,
C-DRM
Dlgtor,
Dlgtee,
C-DRM

Dlgtor,
Dlgtee,
C-DRM
S-DRM

S-DRM,
C-DRM

DeleRequest(dlgtor,dlg-ee,
resource, capability)

DeleVerify(dlgtee,dlgt-
or,capability, ACS)

DeleReply(dlgtor,dlgtee,re
sult)
Delegation(dlgtor,dlgtee,D
C, timestamp)

Revoke(dlgtor,dlgtee,
DC, timestamp)

AccessDecision(dlgtee,
resource, DC,ACS)

DeleValiTest(dlgtee,
resource, DC, attributes,
timeperiod)

Delegatee requests
delegated capability of
delegator.
Delegation Verifi-cation
on C-DRM integrating
ACS.
Sending result to

delegatee.
Dlgtor and dlgtee

subscribe DC on C-
DRM that sends it to
Database.

Revocation DC of dlgtee
and storing result in
Database.
S-DRM makes access
decision according to
DC.
S-DRM & C-DRM tests
validity of DC
periodically through
attributes of entities.

Here represents delegation process between agents,

Agent_Dlgtor owns some capabilities, Agent_Dlgtee
requests a capability for the sake of sharing information
and cooperation, material process is as follows:
(1) Agent_Dlgtee calls function DeleRequest
(Agent_dlgtor, Agent_dlgtee, resource, capability) on C-
DRM to Agent_Dlgtor, and send the request of capability
delegation on resource ;
(2) Agent_Dlgtor calls DeleVerify (Agent_dlatee,
Agent_dlgtor, capability, ACS) on C-DRM to verify the
request;
(3) Agent_Dlgtor calls Delegation (Agent_dlgtor,
Agent_dlgtee, DC, timestamp) subscribes Delegation
Certification with Agent_Dlgtee on C-DRM, at the same
time the DC is sent to delegation database; then
DeleReply (Agent_dlgtee, Agent_dlgtor, result) is called
on C-DRM to send verification result to Agent_Dlgtee.
(4) When Agent_Dlgtee begin to access to shared
information, AccessDecision (Agent_dlgtee, resource,
DC, ACS) acts on S-DRM for access decision via
delegation database; in the procedure of access,
DeleValiTest (Agent_dlgtee, resource, DC, attributes,
timeperiod) test delegated capability validity in every
given periods by system and delegator.
(5) If the attributes of Agent_Dlgtee,Agent_Dlgtor, or
resource change, Server could pause access and C-DRM
calls the function Revoke (Agent_dlgtee, Agent_dlgtor,

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

DC, timestamp) to revoke delegation, then stores result in
database.

5. A Practical Application Based on the Model

The designing and realization of Agent-Based Text

Information Retrieval System (ABTIRS) adopted this
model, so it improved on the issue of agent’s capability
and cooperative work, advancing system efficiency and
parallel processing. The system defined and realized User
Interface Agent (UIA), Information Collection Agent
(ICA), Information Processing Agent (IPA), Interests
Learning Agent (ILA)and their corresponding role based
on different responsibility and capability, such as UIAR,
ICAR, IPAR and ILAR, respectively accomplishing
retrieval demand analyzing and feedback, text
information collection, information filtering, as well as
user’ interests collection. Multi-Agent Delegation
Management Subsystem (MADMS) mainly implemented
agent-role assignment, role-capability assignment,
capability delegation and collaboration constraint.
Especially, capability delegation between agent roles was
processed based on the above mentioned architecture and
key protocol functions in section 4.Because agents are
intelligent and independent, they could not only adjust
and activate their new roles according to the change of
ACS, but also delegate their capabilities or roles to the
other agents for sharing resource and cooperation in this
system. The framework of ABTIRA is as following
figure3.

Figure 3. Framework of ABTIRA based on model

6. Conclusions

CDM for MAS is a dynamic multi-agent capability
delegation reference model supporting time character and
delegation constraint for the sake of collaboration. Based
on the model, agent’s capability is not single and static,

but multiple and dynamic assignment and delegation, at
the same time ACS and agent role/capability constraints
improve agents’ cooperative work and security of MAS.
The future research is enriching the model semantics and
further formalization, especially in dynamic attributes
change and management.

References
[1] J.S. Wang and S.G. Cui, “Multi-Agent Technology and
Applications”, Computer Engineering and Applications, 2003,
39(18), 61-62+66.
[2] M. Ren, and C.D. Wang, “Research of Multi-agent
Cooperating Based on Federation Structure”, J. of East China
University of Science and Technology, 2004, 30(3), 311-314.
[3] A. Omicmi, A. Ricci, and M. Viroli, “RBAC for
Organisation and Security in an Agent Coordination
Infrastructure”, Electronic Notes in Theoretical Computer
Science, 2005 (128), 65-85.
[4] H.X. Lai and S. Zhang, “Role-Based Multi-Agent Workflow
Model”, Computer Applications, 2004, 24(12), 316-318.
[5] H.B. Zhu. “Some issues of Role-Based Collaboration”,
Proceedings of IEEE CCECE2003- CCGEI2003, Montreal,
May, 2003.
[6] A.R. Tripathi, T. Ahmed, and R. Kumar, “Specification of
Secure Distributed Collaboration System”, Proc. of IEEE the
sixth International Symposium on Autonomous Decentralized
System, 2003.
[7] LI Cheng-kai,ZHAN Yong-zhao and XIE Li, “A Role-Based
Access Control Model for CSCW Systems”, Journal of Software,
2000,11(7), 931-937.
[8] D. Xiao, C. Liu, and X. Chen, “The security model of
CSCW system based on RBAC”, J. Huazhong Univ. of Sci.
&Tech. (Nature Science Edition), 2004,32(5), 56-58.
[9] Z.Y. Zhang, J.X. Pu, and C.Y. Feng, “Multi-Agent System
Management Model Based on Role & Agent Collaboration
Scenarios”, Computer Application and Software, 2005, 22(10),
107-109.
[10] X.W. Zhang, S.J. Oh, and S. Ravi, “PBDM:A Flexible
Delegation Model in RBAC”, Proceedings of
SACMAT2003,June2-3,Como,Italy.
[11] E. Barka, and R. Sandhu, “A Role-Based Delegation Model
and Some Extensions”, Proceedings of the 16th Annual
Computer, Sheraton New Orleans, 2000.
[12] S.Y. Na , S.H. Cheon, “Role Delegation in Role-Based
Access Control”, Proceedings of ACM RBAC2000，2000.
[13] Z.Y. Zhang, and J.X. Pu, “Permission-Role Based
Delegation Model and Object-Oriented Modeling”, Proceedings
of China National Open Distributed and Parallel Computing
Symposium 2004, Beijing, China, Oct.19-21, 2004, pp. 52-55.
[14] Z.Y. Zhang and J. Pu, “Delegation Model for CSCW Based
on RBAC Policy and Visual Modeling”, Proc. of the 11th Joint
International Computer Conf. 2005，World Scientific Press
Company, Chongqing, China, Nov.10-12, 2005, pp. 126-130.

