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Differential analysis is one of the most important
attacks threatening iterated block ciphers. To
resist against differential attacks [1], the multi-
output Boolean functions used in designing S-
boxes should have low differential uniformity. For
a positive integer n, the lowest differential unifor-
mity of the functions from the finite field F2n (for
a prime power q, Fq denotes the finite field with
q elements, and F

∗
q denotes Fq \ {0}) to itself is

2, and these functions are called almost perfect
nonlinear (APN). APN functions have been inten-
sively studied in the last decades and researchers
have made many interesting observations about
them (the reader is referred to [2] and references
therein). While the cubic map is an obvious APN
permutation for odd dimension n, the existence of
APN permutations for even dimension n has been
a long-standing question. Very recently, the first
example of APN permutation over F26 was found
in [3], but the question on the existence of APN
permutations in even dimension n > 6 still re-
mains open. From the cryptographic point of view,
permutations with low differential uniformity are
therefore of great interest [4].

The inverse function over F28 is applied to de-
sign the S-box of the Advanced Encryption Stan-
dard (AES) [5], and it is a differentially 4-uniform
permutation over F28 . This motivates people to

study the constructions of 4-uniform permutation
polynomials with other desired properties, recent
papers like [4]. can be referred. Further, some
differentially 6 or 8-uniform monomials are con-
sidered [6, 7]. Simulations in [6] show that for
17 6 n 6 31, all monomials over F2n differentially
6-uniform belong to the family

{

Gt(x) = x2t−1, x ∈ F2n : 1 < t < n
}

,

and some differentially 6-uniform power functions
of this family are discussed in [6, 7].

Our purpose is to extend the study of 6-
uniform functions and construct new differentially
6-uniform non-monomial functions. We propose a
class of non-monomial permutations with differen-
tial uniformity at most 6, and the key idea is to
use rational functions over finite fields. This can
be regarded as a generalization of the construction
of the inverse function over finite fields, and it is
in fact a piecewise permutation [8].

Theorem 1. Let n = 2m for a positive inte-
ger m and δ ∈ F2n satisfying Trn1 (δ) = 1. Define
f(x) : F2n −→ F2n as

f(x) =











1

x2 + x
, if Trn1 (δx) = 0,

1

δx
, if Trn1 (δx) = 1,
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where 1
0 is defined to be 0. Then f(x) is a permu-

tation over F2n with ∆f 6 6.

Proof. Firstly we investigate the permutation
property of f(x). Suppose f(x) = f(y) for two
distinct elements x and y of F2n . When Trn1 (δx) =
Trn1 (δy) = 0, we have x2+x = y2+y, then x+y = 1
due to x 6= y and Trn1 (δx)+Trn1 (δy) = Trn1 (δ) = 1.
This is impossible. The other two cases Trn1 (δx) =
Trn1 (δy) = 1 and Trn1 (δx) 6= Trn1 (δy) are similar.
Then f(x) permutes F2n .

To determine the differential uniformity of f(x),
we need prove that for any a ∈ F

∗
2n and b ∈ F2n ,

there are not more than six solutions in F2n of the
differential equation

f(x) + f(x+ a) = b. (1)

When b = 0, obviously the above equation has
no solutions in F2n because f is a permutation.
Assume b 6= 0. Denote by Hij = {x ∈ F2n :
Trn1 (δx) = i, Trn1 (δ(x+ a)) = j} andNij the num-
ber of solutions of (1) in Hij for i, j ∈ {0, 1}. It
suffices to prove that for any pair (a, b) ∈ F

∗
2n×F2n ,

δf (a, b) = N00 +N01 +N10 +N11 6 6.

Observe that N01 = N10 and Eq. (1) is equivalent
to

1

x2 + x
+

1

(x+ a)2 + x+ a
= b, x ∈ H00, (2)

1

x2 + x
+

1

δ(x + a)
= b, x ∈ H01, (3)

1

δx
+

1

(x+ a)2 + x+ a
= b, x ∈ H10, (4)

1

δx
+

1

δ(x+ a)
= b, x ∈ H11. (5)

Two cases Trn1 (δa) = 1 and Trn1 (δa) = 0 need to
be distinguished.

(i) Trn1 (δa) = 1. In this case, we have N00 =
N11 = 0 since neither Trn1 (δx) = Trn1 (δ(x+ a)) =
0 nor Trn1 (δx) = Trn1 (δ(x + a)) = 1 holds. Thus,
it suffices to consider N01. Note that x = 0 sat-
isfies (3) if and only if abδ = 1. Further, neither
x = 1 nor x = a satisfies (3) since x = 1 satisfy-
ing (3) implies 1 = Trn1 (δ) = Trn1 (δx) = 0 while
x = a satisfying (3) implies 0 = Trn1 (δ(a+ a)) =
Trn1 (δ(x+ a)) = 1. If only the solutions not
in {0, 1, a} are considered, the equation 1

x2+x
+

1
δ(x+a) = b is equivalent to

x2 + x+ δ(x+ a) = b(x2 + x)δ(x + a). (6)

When abδ 6= 1, obviously x = 0 does not satisfy
(3). The number of solutions to (6) is not more

than 3 and then N2 6 3. When abδ = 1, by mul-
tiplying (6) with a, we have

x3 + x2 + δax+ δa2 = 0.

Suppose x0, x1, x2 are three solutions of (6). By
(3), we have Trn1 (δxi) = 0 for i ∈ {0, 1, 2}. From
Vieta’s theorem, x0 + x1 + x2 = 1 and then
0 = Trn1 (δx0)+Trn1 (δx1)+Trn1 (δx2) = Trn1 (δ) = 1,
which is impossible. Thus Eq. (6) has at most two
solutions. This together with x = 0 shows N2 6 3.

(ii) Trn1 (δa) = 0. Since Trn1 (δa) = 0 contradicts
with Trn1 (δa) = Trn1 (δx) + Trn1 (δ(x+ a)) = 1 in
(3) and (4), we have N01 = N10 = 0. Thus, it suf-
fices to consider (2) and (5). Note (2) has x = 0,
a as its two solutions if and only if 1

a2+a
= b, we

need consider the solutions of (2) not in {0, a}.
The equation 1

x2+x
+ 1

(x+a)2+x+a
= b is equivalent

to
a2 + a = b(x2 + x)(x2 + x+ a2 + a), (7)

which has at most four solutions. Note that x = 0
or x = a does not satisfy (7), otherwise we have
a2 + a = 0, which contradicts with 1

a2+a
= b 6= 0.

It can be observed that Eq. (7) has the set of solu-
tions as the form {x0, x0+1, x1, x1+1}. However,
from (2) the constraint Trn1 (δxi) = Trn1 (δ(xi +
1)) = 0 for i ∈ {0, 1} implies that Trn1 (δ) = 0,
which is a contradiction. This shows

N00 6











4,
1

a2 + a
= b,

2,
1

a2 + a
6= b.

Observe that Eq. (5) is equivalent to

δa = bδ2x(x+ a),

and then N11 6 2.
These analysis shows that for b 6= 0, the inequal-

ity
N00 +N01 +N10 +N11 6 6

holds.

Example 1. Let the finite field F24 be generated
by the primitive polynomial m(x) = x4 + x + 1
and ω be a root of m(x). Take δ = ω11 and then
Tr41(δ) = 1. So f(x) defined by Theorem 1 is

f(x) =











1

x2 + x
, if Tr41(ω

11x) = 0,

1

ω11x
, if Tr41(ω

11x) = 1.

It can be verified that f(x) permutes F24 with
∆(f) = 4. If we take δ = ω3, then ∆(f) = 6.

Theorem 2. The algebraic degree of f(x) is
n− 1.
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Proof. By the definition of f(x) in Theorem 1,
we have

f(x) =
∑

Trn
1
(δc)=0

1

c2 + c

(

1 + (x+ c)2
n−1

)

+
∑

Trn
1
(δc)=1

1

δc

(

1 + (x + c)2
n−1

)

,

in which the coefficient of the term x2n−1 is

∑

Trn
1
(δc)=0

1

c2 + c
+

∑

Trn
1
(δc)=1

1

δc
=

∑

c∈F2n

f(c) = 0,

and the coefficient t2n−2 of the term x2n−2 is

t2n−2 =
∑

Trn
1
(δc)=0

c

c2 + c
+

∑

Trn
1
(δc)=1

c

δc
.

Note that
∑

Trn
1
(δc)=1

c
δc

=
∑

Trn
1
(δc)=1

1
δ
= 0, we

have

t2n−2 =
∑

Trn
1
(δc)=0, c 6=0

c

c2 + c

=
∑

Trn
1
(δc)=0, c 6=0

1

c+ 1
=

∑

Trn
1
(δc)=1, c 6=1

1

c

= 1 +
∑

Trn
1
(δc)=1

1

c
= 1 + δ

∑

Trn
1
(c)=1

1

c
.

It can be verified that

∏

Trn
1
(c−1)=1

(x+ c) = x2n−1

+

n−1
∑

i=0

x2n−1−2i . (8)

Indeed, the left hand-side of (8) is the polynomial
with all elements in {c ∈ F2n : Trn1 (c

−1) = 1} as
its roots. Meanwhile, the equalities

Trn1 (c
−1) = 1 ⇔

n−1
∑

i=0

c−2i = 1

⇔

n−1
∑

i=0

c2
n−1−2i = c2

n−1

indicate all elements in {c ∈ F2n : Trn1 (c
−1) =

1} also are roots of the polynomial x2n−1

+
∑n−1

i=0 x2n−1−2i . The equality (8) holds since the
two polynomials both have algebraic degree 2n−1.

Note that
∑

Trn
1
(c)=1

1
c
=

∑

Trn
1
(c−1)=1 c. There-

fore, by Vieta’s formula we have
∑

Trn
1
(c)=1

1
c
= 1

and then t2n−2 = 1 + δ 6= 0 due to Trn1 (δ) = 1.
By the definition of algebraic degree, we have
deg(f) = n− 1 due to wt(2n−1 − 1) = n− 1.

Based on exponential sums and the knowledge
of the function fields, the nonlinearity of the pro-
posed permutation polynomials can be character-
ized.

Theorem 3. Let n > 4 be an even integer and
f(x) be a permutation constructed as in Theo-
rem 1. Then we have

NL(f) > 2n−1 − 3 · 2
n

2 − 1.
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