
Parallel Computing: Review and Perspective

Yuxiang Li

School of Information Engineering
Henan University of Science and Technology

Luoyang, China
liyuxiang@haust.edu.cn

Zhiyong Zhang

School of Information Engineering
Henan University of Science and Technology

Luoyang, China
xidianzzy@126.com

Abstract—As parallelism on different levels becomes ubiq-
uitous in today

′
s computers, it seems worthwhile to provide

a review of the wealth of every aspect of parallel computing
that has evolved over the last decades. We refrain from a com-
prehensive survey and concentrate on parallel programming
patterns, design for parallel program, parallel programming
models, parallel programming languages, design of parallel
algorithms, together with a perspective of parallel computing.
Besides presenting the patterns, models, design frameworks,
we also refer to languages, implementation, and tools.

Keywords-parallel computing; pattern; model

I. INTRODUCTION

With the rapid development of computational techniques

and computational methods, almost all disciplines are now

tending quantification and precision, generating new areas,

i.e. computational physics, computational chemistry, compu-

tational materials, computational mechanics, computational

biology, computational meteorology and computational sci-

ence electronics. Computing Science and Engineering (CSE)

is meanwhile generated. Computation enhances people
′
s

ability to engage in scientific research, broadening the per-

spective of people
′
s insight into nature, accelerating the pro-

cess of transforming science and technology into productive

forces, and profoundly changes the ways of human beings.

Computational science, theoretical science and experimental

science have been three primary disciplines.

Parallel computing [6], [9], in short, is the computation on

a parallel computer, and is often synonymous with high per-

formance computing and supercomputing because any high-

performance computing and supercomputing can not be sep-

arated from the use of parallel computing technology. The

development of parallel computing technology is inseparable

from the human endless pursuit in computer performance. A

very high challenge for parallel computing is requested in the

following aspects:construction and simulation of prediction

model, engineering design and automation, can be used in

exploration, medical, military and basic theoretical research.

The demand for parallel computing is extensive, and there

are three main types of demand: 1. Compute-intensive appli-

cations, such as large-scale scientific engineering calculation

and numerical simulation; 2. Data-intensive applications,

such as digital libraries, data warehousing, data mining and

computing visualization; 3. Network-intensive applications,

such as system work, remote control and remote medical

diagnosis.

This paper gives a simple summary of the parallel comput-

ing technology, and the main branches of parallel computing.

Section 1 presents introduction; section 2 gives the descrip-

tions of parallel programming patterns; section 3 shows the

designs for parallel programs; section 4 presents the parallel

programming models; section 5 shows the parallel program-

ming languages; section 6 presents the parallel algorithm

design; finally, a perspective is given.

II. PARALLEL PROGRAMMING PATTERN

In general, parallel programming pattern [2] is a form of

parallel programming. Similar to the adopted functional or

structural programming in sequential programming, it is the

way that programmers parallelize every modules. Parallel

programs can be inferred into some definitive programming

patterns, every of which includes a class of algorithms

possessing the same control structure. Parallel programming

patterns can be classified into six classes: master/slave

pattern, single program multiple data (SPMD) pattern, data

pipelining pattern, divide and conquer pattern, speculative

multithreading (SpMD) pattern, hybrid pattern.

A. Master/Slave Pattern

Most representative distributed computers use mas-

ter/slave pattern [8], which uses Remote Procedure Call

(RPC) to communicate among modules, which exist inherent

parallelism. Master/slave pattern contains two parts: master

and slaves. Master takes charge of task decomposition,

collecting the solutions of every subtask, and aggregating all

solutions into the final solution. Slaves perform the following

actions recurrently: message receipt, subtask processing,

returning results to master.

B. Divide and Conquer

Divide-and-conquer strategy [5] aims to divide a problem

into two or more sub-problems, solve every sub-problem to

obtain independent solutions, and then combine these results

to get the final solution. The common operations in divide-

and-conquer strategy are decomposition, calculation and

365

2018 5th International Conference on Information Science and Control Engineering

978-1-5386-5500-9/18/$31.00 ©2018 IEEE
DOI 10.1109/ICISCE.2018.00083

Master

Slave1 Slave2 Slave3

Task

Slave4

Figure 1: Simplified master/slave pattern

Task Decomposition &
Solution Aggregation

Decomposition&
Aggregation

Subtask Calculation

Figure 2: Virtual tree of divide-and-conquer

summary. The structure of the divide-and-conquer strategy is

organized into a virtual tree. Some processes derive subtasks

and the results of these subtasks are aggregated to compute

an integrated solution. The calculation tasks are performed

by the leaf nodes of the virtual tree, and the execution

process is shown in Fig 2.

C. Pipelining

A pipeline includes a chain of processing elements (func-

tions, coroutines, processes, threads, etc.), which are ar-

ranged to reach a goal that the output of one element is the

input of another element. Usually, this pattern buffers some

amount of results between consecutive elements. Pipeline

pattern divides tasks into several sub-tasks, and begins to

execute them in different stages. What flows through these

pipelines are often a stream of records, bits or bytes, and

the elements of a pipeline may be filters.

A pipeline is one-directional and linear, though more

general flows apply the pipelining pattern. Take an one-

directional pipeline as an example, it may have some

communication in another direction, known as one return

channel, or one pipeline may be fully bi-directional.

D. Speculative Multithreading

Speculative Multithreading [3] (SpMT), also called

Thread-Level Speculation (TLS), is a promising technique

which parallelizes sequential codes aggressively, without

considering too much about the success of execution, which

is guaranteed by hardware. Compared to manual paralleliza-

tion, irregular sequential programs are accelerated by SpMT

with lower cost and fewer user interactions, and has a wide

range of applications [1].

SpMT was proposed as a perspective method for paral-

lelizing sequential programs to achieve more parallelization

running on Chip Multiprocessors (CMP). SpMT execution

model [7] partitions a sequential program into multiple

speculative threads, which respectively executes a different

part of the sequential program. Among parallelly executed

threads, only one special thread is called non-speculative

thread, allowing to commit its results to memory, and other

threads are all speculative.

When the non-speculative thread completes execution, it

needs verify the execution results of its successor thread. If

the results of successor thread proves correct, all the values

generated by the non-speculative thread will be committed

to memory and then its successor thread turns into non-

speculative. Otherwise, all speculative child threads would

be revoked by the non-speculative thread and its successor

threads would be re-executed. Fig.3 shows four scenes,

including sequential execution, speculative execution, spec-

ulative failure, Read-After-Write(RAW) violation. Fig.3(a)

shows sequential execution, while Fig.3(b) illustrates the

scene of successful speculation. Fig.3(c) presents the scene

of failed speculative parallelization and sequentially executes

the child thread again. Fig.3(d) illustrates the scene of RAW

violation, in which child thread is re-executed.

366

sp

cqip

(a)

Sequential execution tim
e

sp

cqip

cqip

success

Parallel execution tim
e

(b)

sp

cqip

cqip R
e-execution tim

e

failure

(c)

sp

cqip
cqip

Execution tim
e w

ith R
A

W

X

cqip

RAW

(d)

Figure 3: Thread-level speculative model: (a) sequential execution; (b) parallel execution; (c) failed parallel execution; (d)

RAW.

III. DESIGNS FOR PARALLEL PROGRAMS

During the design of parallel programming, two points

need to be considered, namely correctness and efficiency.

In the process of parallel programming design, we not

only need consider the development environment, but also

the difficulties and progresses. The difficulties for parallel

program design primarily lie in four aspects:

• There are not too much good paradigms to parallelize

algorithms.

• Computational models are not unify.

• Parallel programming languages are still not mature and

sophisticated.

• Development environment and tools lack growing pe-

riod.

While, the progresses can be summarized as follows:

• Many of algorithms have good paradigms.

• Programming type has been classified into three class-

es, including message passing, shared variables, data

parallelization.

A. Design Process and Parallel Programming Environment

1) Design Process: The design process can be summa-

rized into two steps:

• The specific algorithms are extracted and written in

accordance with the specific phenomena.

• The generated algorithms are realized by programming

on the foundation of parallel computation models, for

example LogP, PRAM, BSP, PGAS, and et al.
2) Parallel Programming Environment: In the current

parallel machines, the more popular parallel programming

environment[10] can be divided into three categories: mes-

sage passing, shared memory and data parallelism. Their

characteristics: typical representatives, portability, parallel

granularity, parallel operation mode, data memory mode,

data distribution method, learning difficulties, scalability and

other aspects are given in Table I.

IV. PARALLEL PROGRAM MODEL

Parallel program model is a collection of procedural

abstractions that provide programmers with a transparent

diagram of the computer hardware/software system. The

model can be used by programmers to design parallel pro-

grams for multiprocessors, multiple computers, and clusters

of workstation.

Classifications of parallel programming models can be

divided broadly into two categories:implicit parallel program

model and explicit parallel program model.

A. Implicit Parallel Program Model

The most famous method in the implicit parallel model is

the automatic parallelization of serial programs. The compil-

er performs a correlation analysis of the serial source code

program, and then uses a set of conversion techniques to

convert the sequential codes into parallel codes. The key to

parallelizing the serial code is the correlation analysis, which

mainly includes analysis of data correlation and analysis of

control correlation. If operation A depends on B, then A
must be executed after B; both operations can execute in

parallel if they are not correlated with each other. If the cor-

relation does exist, it must be removed by use of conversion

technique. Three most important conversion methods are the

privatization, parallel reduction, and induction variables.

B. Explicit Parallel Program Model

The explicit parallel program model can be primarily

categorized into three parts: data parallel model, shared-

variable model, message passing model. The difference of

them are shown in Table I.

1) Data Parallel Model: The Data Parallel Model can be

implemented either on a SIMD computer or on an SPMD

computer, depending on the granularity. SIMD procedures

focus on the development of instruction-level fine-grained

parallelism, while SPMD program focuses on the parallelism

of granularity at subprogram level. Data parallel program

emphasizes local computation and data routing, and is suit-

able for the application of regular networks, templates and

multidimensional signal/image data sets to solve the problem

of fine grained applications. Synchronization of data-parallel

operations is done at compile-time rather than at run-time.

Hardware synchronization is performed by the controller

performing a SIMD program lock step operation. In the

367

Table I
Comparisons of three parallel programming environments

Characters Message Passing Shared Memory
Representative MPI,PVM OpenMP
Parallel granularity process-level granularity thread-level granularity
Operating mode asynchronous asynchronous
Memory mode distributed memory shared memory
Data distribution explicit implicit
Degree of difficulty more difficult easy
Scalability good bad
Characters Data Parallelism
Representative HPF
Parallel granularity process-level fine granularity
Operating mode loose synchronization
Memory mode shared memory
Data distribution semi-implicit
Degree of difficulty easier
Scalability general

synchronous SIMD programs, the communications between

all PEs are controlled by hardware. In addition to the

interlocking operation between all PEs, data communication

between PEs is also carried out in a lock-step manner. The

execution of these synchronization instructions and the data

routing operation makes the SIMD computer very efficient

in exploiting the spatial parallelism of large arrays, large

grids, or grid data.

2) Shared Memory Model: The shared memory model

is an abstraction of a general centralized multiprocessor,

such as the parallel machines with SMP architectures. The

bottom layer is a series of processors, and all processors can

access the data of the shared memory. All data are accessible

for every processor, and need not be transmitted among

processors. As all processors can interact and synchronize

through shared variables as they can access the same location

in memory.

3) Message Passing Model: In the message passing

model, processes residing on different processor nodes can

communicate with each other by delivering messages over

the network. The message can be an instruction, a data, a

synchronization signal, or an interrupt signal. In message

passing parallel programs, the user must explicitly allocate

data and loads. The message passing parallel model is

more suitable to develop large-grain parallelism, which is

multithreaded and asynchronous, and requires explicit syn-

chronization (such as roadblocks) to ensure correct execution

sequence.

However, these processes have their separate address

space. The messaging model is more flexible than the data

parallel model, and the two widely used standard libraries,

PVM and MPI, make messaging a much better portability.

A messaging program can be executed not only on a

multiprocessor with shared variables, but also on a multi-

machine with distributed storage.

V. PERSPECTIVES

Recently, with the continuous development of new ap-

plications as well as hardware technology, and parallel

computing also has several new developments, primarily

including cloud computing, multi-core architecture, personal

high-performance computers.

A. Data-Centric Cloud Computing

Cloud computing [4] is analogy to the distributed com-

puting, parallel computing and grid computing, but different

from them. Cloud computing is based on parallel computing.

Cloud computing means an increased demand for parallel

computing on the server side, as tens of thousands of

user applications are implemented over the Internet in the

cloud. While cloud computing brings about fundamental

changes in the users
′

work ways and business models,

large-scale parallel computing technologies put forward new

requirements for parallel computing.

B. Multi-Core Architecture

In recent years, with the limit approximation of chip

integration, and energy consumption and cost, the products

with multi-core architectures are gradually becoming the

market mainstream.

Multi-core architecture makes use of the resources within

the chip effectively, and can effectively exploit the programs
′

parallelism, improving the performance rapidly. In multi-

core structure, the interconnection among processor cores is

shortened and the data transmission bandwidth is increased,

and resources are effectively shared, while the power con-

sumption of chips is also reduced.

C. Personal Computer with High Performance

Personal computers are developing toward high-

performance computers, which are characterized by high

performance. They are faster than PC computers, ordinary

workstation or network computers in terms of floating-point

speed, ability to handle data set size, I/O performance,

368

performance of exchange and synchronization, et al.
There are four major shifts in personal high-performance

computers, including:

1) Personal computers with high performance can be

used in offices, while they were only used in computer

room.

2) Personal computers with high performance are a type

of volume products, so the cost of the computers,

reliability, production capacity, management, mainte-

nance, service, and application areas all have a higher

demand.

3) Personal computers with high performance are turning

to user-centric using model.

4) Personal computers with high performance are adopt-

ing high productivity programming.

VI. ACKNOWLEDGEMENT

We thank our 3C laboratory for their great support during

our work. We give our best hope to all our colleagues of

laboratory for their collaboration. We also thank reviewers

for their careful comments and suggestions. This work is

supported by Doctoral Fund of Ministry of Education of

China under Grant No.2013021110012 && National Natural

Science Foundation of China under Grants No.61173040.

REFERENCES

[1] David Bader. Analyzing Massive Social Networks Using
Multicore and Multithreaded Architectures. Springer-Verlag,
2010.

[2] Manuel I. Capel, Antonio J. Tomeu, and Alberto G. Salguero.
A set of patterns for concurrent and parallel programming
teaching. In European Conference on Parallel Processing,
pages 203–215, 2017.

[3] Alvaro Estebanez, Diego R Llanos, and Arturo Gonzalez-
Escribano. A survey on thread-level speculation techniques.
ACM Computing Surveys (CSUR), 49(2):22, 2016.

[4] Brian Hayes. Cloud computing. Communications of the Acm,
51(7):9–11, 2008.

[5] Yi Mei, Mohammad Nabi Omidvar, Xiaodong Li, and Xin
Yao. A competitive divide-and-conquer algorithm for uncon-
strained large-scale black-box optimization. Acm Transac-
tions on Mathematical Software, 42(2):13, 2016.

[6] Aaftab Munshi and Jeremy Sandmel. Data parallel computing
on multiple processors, 2018.

[7] Christopher JF Pickett and Clark Verbrugge. Sablespmt: A
software framework for analysing speculative multithreading
in java. In ACM SIGSOFT software engineering notes,
volume 31, pages 59–66. ACM, 2005.

[8] Aleksander Rydzewski and Pawe? Czarnul. A distributed
system for conducting chess games in parallel. Procedia
Computer Science, 119:22–29, 2017.

[9] Wenwu Tang, Wenpeng Feng, Jing Deng, Meijuan Jia, and
Huifang Zuo. Parallel computing for geocomputational mod-
eling. 2018.

[10] YongbingLi. Parallel programming environment and tools.
Journal of ChangZhi College, 26(2):41–43, 2009.

369

